2. Предел линейной функции:
lim𝑥→𝑎(𝑚𝑥+𝑏)=𝑚𝑎+𝑏
где ( m ) и ( b ) – коэффициенты линейной функции.
3. Предел степенной функции:
lim𝑥→𝑎𝑥𝑛=𝑎𝑛
для любого целого ( n \geq 0 ).
4. Предел рациональной функции:
lim𝑥→𝑎𝑃(𝑥)𝑄(𝑥)=𝑃(𝑎)𝑄(𝑎)
при условии, что знаменатель ( Q(a) \neq 0 ).
5. Предел экспоненциальной функции:
lim𝑥→𝑎𝑒𝑥=𝑒𝑎
6. Предел логарифмической функции:
для lim𝑥→𝑎ln(𝑥)=ln(𝑎),для 𝑎>0
7. Предел синуса и косинуса:
lim𝑥→0sin(𝑥)𝑥=1lim𝑥→0tan(𝑥)𝑥=1lim𝑥→01−cos(𝑥)𝑥2=12.
Эти замечательные пределы являются основой для более сложных вычислений и асимптотического анализа функций в математическом анализе.
В настоящем разделе в качестве замечательных пределов выбраны пять. Они были особенно популярны при решении математических задач и примеров в ходе занятий по высшей математике со студентами СПбГУКИ.
I. lim (n -> r бесконечности)(1 +1/n)^n = e, или lim (x -> r бесконечности) (1 +1/x)^x = e, или или lim (у -> 0) (1 +y)^(1/y) = e.
II. lim (x -> 0) sinx/x = 1.
III. lim (x -> 0) ln(1 +x)/x = 1.
IV. lim (x -> 0) (a^x – 1)/x = lna или, при a = e, lim (x -> 0) (e^x – 1)/x =1.
V. lim (x -> 0) ((1+x)^k – 1/x)/x = k, где k – любое вещественное число.
Кроме того, в этом разделе помещен справочный материал, без которого даже стоять на пороге математического анализа просто не рекомендуется.
Алгебра.
1. Формулы сокращенного умножения и разложения на множители:
(a + b)^2 = a^2 +2ab +b^2
(a – b)^2 = a^2 – 2ab +b^2
(a + b)^3 = a^3 +3a^2b +3ab^2 +b^3
(a – b)^3 = a^3 – 3a^2b +3ab^2 – b^3
a^3 + b^3 = (a + b)(a^2 – ab +b^2)
a^3 – b^3 = (a – b)(a^2 – ab +b^2)
ax^2 + bx + c =a(x – x1)(x – x2), где x1 и x2 – корни уравнения ax^2 + bx + c.
2. Степени и корни.
Для любых натуральных p и q;
(a^p)*(a^q) = a^(p+q); a^p/a^q = a^(p – q) a =/ 0;
(a^p)^q = a^(pq); a^p/b^p = (a/b)^p b =/ 0;
(a^p)*(a^p) = (ab)^p; a^0 = 1 a =/ 0;
a^(– p) = 1/a^p a =/ 0; a^(1/p) = корень степени р от a;
(a^p)^(1/q) = a^(p/q); [a^(1/q)]^(1/p) = a^(1/pq);
(ab)^1/p = (a^1/p)* (b^1/p); (a/b)^1/p = (a^1/p)/(b^1/p) b =/ 0.
3. Квадратные уравнения.
ax^2 + bx + c, a =/ 0, где x1 и x2 – корни этого уравнения, могут быть определены с помощью:
x1, 2 = (– b + – D^1/2)/2a, где D = b^2- 4ac;
если D > 0, то x1=/x2;
если D = 0, то x1=x2;
если D < 0, то корней нет.
Теорема Виета:
x1+ x2 = – b/a; x1*x2 = c/a
Приведенное квадратное уравнение:
x^2 + px + q = 0
x1+ x2 = – p; x1*x2 = q
Если p =2k (p – четное), то x1, 2 = – k +– (k*2 – q)^1/2
4. Логарифмы.
Если log a от (x) =b, то a^b = x (a>0, a =/ 1,x>0);
a^(log a от (x)) = x; log a от (a) = 1; log a от (1) = 0;
log a от (b) =1/ log b от (a);
log a от (x*y) = log a от (x) + log a от (y);
log a от (x/y) = log a от (x) – log a от (y);
log a от (x^k) = klog a от (x);
log a^k от (x) =(1/k) log a от (x)
Замена основания:
log a от (x) = log c от (x)/ log c от (a) , c > 0 и c=/1
5. Прогрессии.
Арифметическая
a(от n членов прогрессии) = a(n – 1) +d; 2a(n) = a(n – 1)+ a(n – 2); a(n) = a1 +d(n – 1);
Cумма n членов арифметической прогрессии:
S(n) = n/2*(a1 + an)
Геометрическая
b(n) (n – 1)*q, q=/1; b(n) = b1*q^(n – 1);
[b(n)]^2 = b(n – 1)* b(n + 1)
Cумма n членов геометрической прогрессии:
S(n) = b1*(1 – q^n)/(1 – q)
Cумма членов бесконечно убывающей геометрической прогрессии:
S = b1/(1 – q)
6.Тригонометрия.
Основные тригонометрические тождества:
(sin B)^2 + (cos B)^2 = 1
tg B = sin B/ cos B; ctg B = cos B/ sin B;
sec B =1/ cos B; cosec B =1/ sin B;
tg B*ctg B = 1; 1 + (tg B)^2 = 1/(cos B)^2;
1 + (ctg B)^2 = 1/(sin B)^2
Формулы сложения и вычитания аргументов тригонометрических функций:
sin(B + Z) = sinB*cosZ + sinZ*cosB
sin(B – Z) = sinB*cosZ – sinZ*cosB
cos(B + Z) = cosB*cosZ – sinZ*sinB
cos(B – Z) = cosB*cosZ + sinZ*sinB
tg(B + Z) = (tgB + tgZ)/(1 – tgB*tgZ)
tg(B – Z) = (tgB – tgZ)/(1 + tgB*tgZ)
Четность и нечетность тригонометрических функций:
sin(– B ) = – sinB; cos(– B) = cosB; tg(– B) = – tgB;
ctg(– B) = – ctgB; sec (– B) = secB; cosec(– B) = – cosecB
Формулы двойного аргумента:
sin2B = 2sinB cosB;
cos2B = (cosB)^2 – (sinB)^2 = 2(cosB)^2 – 1 =1 – 2(sinB)^2
(sinB)^2 = (1 – cos2B)/2
(cosB)^2 = (1 + cos2B)/2
tg2B = 2tgB/[1 – (tgB)^2]
Формулы половинного аргумента:
[sin(B/2)]^2 = (1 – cosB)/2; [cos(B/2)]^2 =(1 + cosB)/2;
[tg(B/2)]^2 =(1 – cosB)/(1 + cosB); [ctg(B/2)]^2 = (1 + cosB)/(1 – cosB);
Формулы преобразования произведения тригонометрических функций в сумму:
sinB*cosZ = [sin(B +Z) + sin(B -Z)]/2;
cosB*cosZ = [cos(B +Z) + cos(B -Z)]/2;
sinB*sinZ = [cos(B – Z) – cos(B -Z)]/2;
Формулы преобразования суммы тригонометрических функций в произведение:
sinB + sinZ = 2 sin[(B +Z)/2]*cos[(B – Z)/2];
sinB – sinZ = 2 sin[(B – Z)/2]* cos[(B – Z)/2];
cosB + cosZ = 2 cos[(B +Z)/2]*cos[(B – Z)/2];
cosB – cosZ = – 2 sin[(B +Z)/2]*sin[(B – Z)/2];
tgB + tg Z = sin(B +Z)/ (cosB*cosZ);
tgB – tg Z = sin(B – Z)/ (cosB*cosZ);
ctgB + ctg Z = sin(B +Z)/ (sinB*sinZ);
ctgB – ctg Z = sin(Z – B)/ (sinB*sinZ);
Формулы, выражающие тригонометрические функции через тангенс половинного угла:
sinB = 2 tg(B/2)/{1 +[tg(B/2)]^2}; cosB ={1 – [tg(B/2)]^2}/{1 +[tg(B/2)]^2};
tgB = 2 tg(B/2)/{1 – [tg(B/2)]^2}; ctgB = {1 – [tg(B/2)]^2}/2tg(B/2)
Глава 2
Основные понятия и определения
ОПРЕДЕЛЕНИЕ 1
Производной данной функции y = f (x) при данном значении аргумента х0 называется предел отношения приращения функции ∆ у к приращению аргумента ∆x, когда ∆x произвольным образом стремится к нулю.
Если такого предела не существует, то данная функция в точке х0 производной не имеет. В том случае, когда предел равен + или – бесконечности, говорят, что существует бесконечная производная.
Если функция у = f (х) имеет конечную производную в точке x0 , то говорят, что она дифференцируема в точке x0.
Нахождение производной такой функции называется дифференцированием.
Примеры:
Движение автомобиля, поезда, человека и т.д.
Но можно говорить и о других смыслах: например,экономическом:
Скорость падения акций на рынке ценных бумаг, изменение курса валют, падение покупательского спроса на определенные виды товаров, изменение инфляции, зарплаты и т.д.
Правила дифференцирования
Правило 1
Если функции U и V дифференцируемы в точке x0, то их сумма также дифференцируема в точке x0, при чем производная суммы равна сумме производных, т.е. (U + V)' = U' + V'.
Правило 2
Если функции U и V дифференцируемы в точке x0, то их произведение также дифференцируемо в точке x0, при чем (U x V)' = U'V + UV'.