Литмир - Электронная Библиотека
A
A

Глава 1

Устройство и функции мозга

Функциональное устройство мозга человека

Головной мозг – это настоящий шедевр природы, кто-то даже считает, что это самый сложно устроенный объект во всей известной Вселенной. И мы не до конца понимаем, как он работает настолько эффективно и продуктивно! Это управляющий центр всего человеческого организма. Не просто анатомическая структура, но и загадочный орган, не вполне понятным образом отвечающий за наши мысли, чувства, воспоминания, а также за то, как мы воспринимаем мир вокруг себя. Давайте погрузимся в удивительный мир строения и функционирования головного мозга, чтобы понять, как его ключевые отделы влияют на поведение человека и как они взаимодействуют друг с другом.

Строение клеток и ткани мозга

Многие профилактические меры, о которых будет рассказано далее, связаны с процессами на клеточном уровне, поэтому уделим немного внимания тому, как устроена клетка и ее жизненный цикл.

Представьте себе клетку как маленький город, где каждая часть играет свою роль. Она окружена стеной – клеточной мембраной, которая защищает ее и контролирует, что может войти и выйти. Внутри клетки находится цитоплазма – это как улицы города, по которым передвигаются различные строительные материалы и «рабочие».

Мозг – самый сложный орган в человеческом теле.

Одни из главных «рабочих» в клетке – митохондрии. Это электростанции, которые производят энергию для всех процессов в клетке. Они перерабатывают питательные вещества в своего рода энергетическую валюту – молекулы АТФ и НАД+, которые клетка использует для своей жизнедеятельности.

Но кто решает, какие «рабочие» нужны клетке в данный момент? За это отвечает экспрессия генов – процесс, при котором информация, закодированная в ДНК, переводится в белки. Это как инструкции для клетки, какие «специалисты» ей требуются.

Главные «менеджеры» экспрессии генов – факторы транскрипции. Это особые белки, которые находят нужные гены в ДНК и включают их, чтобы началось производство белков. Они как начальники, которые решают, какие цеха на заводе должны работать.

Но факторы транскрипции не всегда активны, а только в нужный момент. Их работа регулируется киназами – «надзирателями». Они, чтобы поменять статус факторов транскрипции, прикрепляют к ним «включатели» и «выключатели» – фосфатные группы. Так клетка может быстро реагировать на сигналы извне и изнутри, подстраивая работу генов под текущие нужды.

Интересно, что митохондрии имеют собственную ДНК, отличную от ДНК в ядре клетки. Ученые считают, что когда-то давно митохондрии были самостоятельными бактериями, которые «поселились» внутри других клеток. Со временем они стали жизненно необходимы друг для друга и теперь не могут существовать отдельно.

Митохондрии способны делиться, сливаться и распадаться на части. Это помогает клетке регулировать их количество и распределение. Когда клетке нужно больше энергии, митохондрии делятся и становятся многочисленнее. А если какие-то митохондрии повреждены, они сливаются с другими и обмениваются «запчастями для ремонта».

Сама клетка тоже может делиться – это как строительство новых городов. Перед делением клетка удваивает свою ДНК и органеллы, а затем распределяет их между двумя новыми клетками. Так организм растет и обновляется. Кстати говоря, взрослые нейроны делиться не могут, они появляются из особых стволовых клеток, количество которых закладывается еще на эмбриональной стадии развития. По мере взросления и старения организма запасы нейрональных стволовых клеток необратимо расходуются.

Но иногда клетки должны самоликвидироваться для блага организма. Это называется апоптоз – запрограммированная клеточная смерть. Во время апоптоза клетка аккуратно разбирает себя изнутри и посылает сигналы иммунным клеткам, чтобы те ее утилизировали. Так организм избавляется от старых, поврежденных или ненужных клеток, предотвращая воспаления и развитие рака. В отличие от деления, нейроны способны к апоптозу, который, по-видимому, играет важную роль в старении мозга, и не всегда желательную.

Получается, клетка – это целый микромир со своими жителями, архитектурой и правилами. Мембрана, цитоплазма, митохондрии и другие части клетки слаженно работают, чтобы поддерживать ее жизнь и функции. А процессы экспрессии генов, деления и апоптоза позволяют клетке адаптироваться, расти, размножаться и обновляться, и жертвовать собой на благо нашего тела.

Мозг представляет собой высокоорганизованную структуру, состоящую из множества различных типов клеток, которые тесно взаимодействуют друг с другом, обеспечивая выполнение разнообразных функций мозга.

Основными клетками мозга являются нейроны и глиальные клетки.

Нейроны – это функциональные единицы нервной системы, которые генерируют и передают электрические и химические сигналы. Именно благодаря работе нейронов возможны такие сложные процессы как мышление, память, обучение, управление движениями.

Нейрон состоит из тела клетки (сомы), где находится управляющий центр – ядро с генетическим материалом, а также из многочисленных отростков, отвечающих за коммуникации нейронов. Длинный отросток называется аксоном. По нему электрический импульс передается от тела нейрона к другим клеткам (не только другим нейронам, но и мышечным, и эндокринным). Более короткие и разветвленные отростки – это дендриты. Они принимают сигналы от аксонов других нейронов. Место контакта аксона одной нейрональной клетки с дендритом другой называется синапсом. В этой точке происходит химическая передача сигнала между нейронами с помощью особых веществ – нейромедиаторов.

В мозге насчитывается около 86 миллиардов нейронов. Они образуют сложные сети, по которым распространяется нервная активность, обеспечивающая функционирование мозга. Нейроны крайне разнообразны по форме, размерам, типам нейромедиаторов, которые они используют, и функциям, которые они выполняют.

Однако нейроны не могли бы полноценно работать без поддержки глиальных клеток. Глия составляет около половины объема мозга. Долгое время ее считали просто опорной тканью для нейронов (отсюда название «глия» – в переводе с греческого «клей»). Но постепенно выяснилось, что глиальные клетки играют важнейшую роль в развитии и функционировании мозга.

Существует несколько основных типов глии:

Астроциты – самый многочисленный тип, звездообразные клетки. Они выполняют опорную и трофическую функции для нейронов – снабжают их питательными веществами и регулируют их микроокружение. Астроциты участвуют в формировании гематоэнцефалического барьера (сито, разделяющее кровоток и ткань мозга), регулируют кровоток в мозге в зависимости от нервной активности (вызывая «приливы» крови к местам наибольшей активности в данный момент). Также астроциты влияют на передачу сигналов в синапсах, участвуют в обучении и памяти.

Олигодендроциты – клетки с небольшим телом и многочисленными отростками. Они образуют миелиновую оболочку вокруг аксонов в центральной нервной системе (ЦНС). Миелин служит электрическим изолятором и значительно увеличивает скорость проведения нервных импульсов по аксонам. Благодаря миелину возможна быстрая передача сигналов между отделами ЦНС. В молодости у человека происходит активное образование миелина вокруг нейронов мозга. Однако при старении организма миелин истончается и фрагментируется, отчего скорость проведения нервного импульса падает. Это связано со старением как раз олигодендроцитов. Яркий пример быстрого разрушения миелина – рассеянный склероз, при котором иммунная система по невыясненным причинам начинает атаковать собственную миелиновую оболочку, принимая ее за чужеродный агент.

Микроглия – резидентные иммунные клетки мозга. Они возникли из предшественников-макрофагов, очутившихся за гематоэнцефалическим барьером еще на заре эмбрионального развития. Они поглощают погибшие клетки, продукты их распада и другие потенциально вредные агенты, защищая мозг от повреждений. При патологических процессах микроглия активируется первой, запуская воспалительную реакцию. Помимо иммунной защиты, микроглия участвует в развитии мозга – формировании и удалении синапсов.

3
{"b":"917429","o":1}