2) f(n) = (n^2 + 1)/(3n – 2) при n стремящейся к бесконечности.
GPTutor
Функция ( f(n) = \frac{n^2 + 1}{3n – 2} ) при ( n ) стремящемся к бесконечности можно проанализировать аналогично предыдущему случаю:
[ \lim_{{n \to \infty}} f(n) = \lim_{{n \to \infty}} \frac{n^2 + 1}{3n – 2} ]
Чтобы найти предел этой функции при ( n ) стремящемся к бесконечности, снова можно воспользоваться правилом Лопиталя или анализировать асимптотическое поведение числителя и знаменателя.
Разделим числитель и знаменатель на ( n ):
[ f(n) = \frac{n^2 + 1}{3n – 2} = \frac{n^2/n + 1/n}{3 – 2/n} = \frac{n + \frac{1}{n}}{3 – \frac{2}{n}} ]
Теперь рассмотрим предел при ( n \to \infty ):
[ \lim_{{n \to \infty}} f(n) = \lim_{{n \to \infty}} \frac{n + \frac{1}{n}}{3 – \frac{2}{n}} ]
При ( n \to \infty ), ( \frac{1}{n} \to 0 ) и ( \frac{2}{n} \to 0 ). Тогда предел выражения равен:
[ \lim_{{n \to \infty}} f(n) = \frac{\infty + 0}{3 – 0} = \infty ]
Таким образом, предел функции ( f(n) ) при ( n \to \infty ) равен бесконечности.
Если возникнут ещё вопросы или нужно что-то ещё разъяснить, обращайтесь!
3) f(x) = 2x/(x^2 – 4) – 1/(x – 2) при x стремящейся к 2.
GPTutor
Функция ( f(x) = \frac{2x}{x^2 – 4} – \frac{1}{x – 2} ) при ( x ) стремящемся к 2 можно проанализировать на предмет её поведения в окрестности точки ( x = 2 ).
Сначала проверим знаменатель дроби ( \frac{1}{x – 2} ). При ( x \to 2 ), знаменатель стремится к 0, что может привести к бесконечности, если числитель не стремится к 0.
Разложим числитель и знаменатель на множители:
[ f(x) = \frac{2x}{(x-2)(x+2)} – \frac{1}{x-2} ]
Теперь рассмотрим предел при ( x \to 2 ):
[ \lim_{{x \to 2}} f(x) = \lim_{{x \to 2}} \left( \frac{2x}{(x-2)(x+2)} – \frac{1}{x-2} \right) ]
Здесь числитель и знаменатель первого слагаемого оба стремятся к 0 при ( x \to 2 ), что создаёт неопределённость типа ( \frac{0}{0} ). Используем правило Лопиталя:
[ \lim_{{x \to 2}} f(x) = \lim_{{x \to 2}} \frac{\frac{d}{dx}[2x]}{\frac{d}{dx}[(x-2)(x+2)]} – \lim_{{x \to 2}} \frac{\frac{d}{dx}[1]}{\frac{d}{dx}[(x-2)]} ]
Вычислим производные:
[ \lim_{{x \to 2}} f(x) = \lim_{{x \to 2}} \frac{2}{2x} – \lim_{{x \to 2}} \frac{-1}{(x-2)^2} ]
Подставляем ( x = 2 ):
[ \lim_{{x \to 2}} f(x) = \frac{2}{4} – \frac{-1}{0^2} ]
[ \lim_{{x \to 2}} f(x) = \frac{1}{2} + \infty ]
Таким образом, предел функции ( f(x) ) при ( x \to 2 ) равен ( \infty ).
Если у вас есть ещё вопросы или нужно что-то ещё разъяснить, пожалуйста, дайте знать!
Глава 3
11. Найти предел функции f(x) = (2x^3 + x^2 – 5)/( x^3 + x – 1) при x стремящемся к бесконечности.
ChatGPT
Для нахождения предела функции при x стремящемся к бесконечности можно разделить каждое слагаемое на x^3 и применить правило Лопиталя для бесконечностей.
f(x) = (2x^3 + x^2 – 5)/( x^3 + x – 1) = (2 + 1/x – 5/x^3)/(1 + 1/x^2 – 1/x^3)
Теперь применяем правило Лопиталя:
lim (x->∞) (2 + 1/x – 5/x^3)/(1 + 1/x^2 – 1/x^3)
= lim (x->∞) (0 – 15/x^4)/(0 – 3/x^4)
= lim (x->∞) 5
Таким образом, предел функции f(x) при x стремящемся к бесконечности равен 5.
GPTutor
Чтобы найти предел (\lim_{{x \to \infty}} \frac{{2 + \frac{1}{x} – \frac{5}{x^3}}}{{1 + \frac{1}{x^2} – \frac{1}{x^3}}}), давайте разложим числитель и знаменатель в ряды Тейлора до необходимой степени, когда ( x \to \infty ).
Числитель:[ 2 + \frac{1}{x} – \frac{5}{x^3} ]
Разложим первые члены в ряд Тейлора:
[ 2 + \frac{1}{x} – \frac{5}{x^3} = 2 + \frac{1}{x} – 5 \cdot \frac{1}{x^3} + O\left(\frac{1}{x^4}\right) ]
Знаменатель:[ 1 + \frac{1}{x^2} – \frac{1}{x^3} ]
Разложим первые члены в ряд Тейлора:
[ 1 + \frac{1}{x^2} – \frac{1}{x^3} = 1 + \frac{1}{x^2} – \frac{1}{x^3} + O\left(\frac{1}{x^4}\right) ]
Теперь подставим эти разложения в исходное выражение:
[ \lim_{{x \to \infty}} \frac{{2 + \frac{1}{x} – \frac{5}{x^3}}}{{1 + \frac{1}{x^2} – \frac{1}{x^3}}} = \lim_{{x \to \infty}} \frac{{2 + \frac{1}{x} – 5 \cdot \frac{1}{x^3} + O\left(\frac{1}{x^4}\right)}}{{1 + \frac{1}{x^2} – \frac{1}{x^3} + O\left(\frac{1}{x^4}\right)}} ]
Теперь выделим основные члены в числителе и знаменателе:
[ = \lim_{{x \to \infty}} \frac{{2 + \frac{1}{x}}}{{1}} = \lim_{{x \to \infty}} \left(2 + \frac{1}{x}\right) ]
Поскольку ( \lim_{{x \to \infty}} \frac{1}{x} = 0 ), то предел равен:[ = 2 ]
Таким образом, (\lim_{{x \to \infty}} \frac{{2 + \frac{1}{x} – \frac{5}{x^3}}}{{1 + \frac{1}{x^2} – \frac{1}{x^3}}} = 2 ).
Выводы:
Работа над ошибками.
Маша
Применяем правило Лопиталя:lim (x->∞) (2 + 1/x – 5/x^3)/(1 + 1/x^2 – 1/x^3)
Чтобы найти предел[\lim_{x \to \infty} \frac{2 + \frac{1}{x} – \frac{5}{x^3}}{1 + \frac{1}{x^2} – \frac{1}{x^3}}]с помощью правила Лопиталя, проверим, что предел имеет форму (\frac{\infty}{\infty}):
Числитель: (2 + \frac{1}{x} – \frac{5}{x^3} \to 2)
Знаменатель: (1 + \frac{1}{x^2} – \frac{1}{x^3} \to 1)
В данном случае предел не имеет формы (\frac{\infty}{\infty}), поскольку при (x \to \infty) числитель стремится к 2, а знаменатель к 1. Таким образом, можно сразу подставить значение:
[\frac{2 + 0 – 0}{1 + 0 – 0} = \frac{2}{1} = 2]
Следовательно,
[\lim_{x \to \infty} \frac{2 + \frac{1}{x} – \frac{5}{x^3}}{1 + \frac{1}{x^2} – \frac{1}{x^3}} = 2]
Найти производную (1/x – 5/x^3 + 1/x^2 – 1/x^3)
Чтобы найти производную функции [f(x) = \frac{1}{x} – \frac{5}{x^3} + \frac{1}{x^2} – \frac{1}{x^3}]
, можно преобразовать ее в более удобный вид и применить правило производной:
[f(x) = x^{-1} – 5x^{-3} + x^{-2} – x^{-3}]
Теперь найдем производную каждого члена:
( \frac{d}{dx}(x^{-1}) = -x^{-2} )
( \frac{d}{dx}(-5x^{-3}) = 15x^{-4} )
( \frac{d}{dx}(x^{-2}) = -2x^{-3} )
( \frac{d}{dx}(-x^{-3}) = 3x^{-4} )
GPTutor
Чтобы найти предел функции ( f(x) = \frac{2x^3 + x^2 – 5}{x^3 + x – 1} ) при ( x \to \infty ), мы будем анализировать поведение выражений в числителе и знаменателе.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.