Цветными точками на рис. 5 показаны портфели с минимальными рисками для данного коэффициента корреляции.
Черными точками на рис. 5 показаны положения портфелей с равными весами активов WA = WB = 0.5. Доходности таких портфелей одинаковые. Но риски этих портфелей тем меньше, чем меньше коэффициент корреляции между доходностями активов.
Обратите внимание, что равные веса активов еще не гарантируют, что получится портфель с минимальным риском. Хорошо видно, что цветные точки находятся левее черных точек на соответствующих цветных кривых.
1.2.2.3. Антикорреляция Corr=-1
При самой маленькой корреляции между доходностями активов (CorrAB=-1) кривые линии портфелей переходят в 2 отрезка, лежащих на прямых линиях, как показано голубым цветом на рис. 5. Эти отрезки касаются вертикальной оси координат в одной точке.
Но все точки на вертикальной оси координат соответствуют портфелям с нулевым риском. Значит, если доходности двух активов в точности антикоррелируют друг с другом, то можно так подобрать весовые коэффициенты этих двух активов, что результирующий портфель не будет иметь никакого риска (то есть станет безрисковым активом). Найдем эти весовые коэффициенты.
Если в последнюю формулу для риска из раздела 1.2.2 подставить CorrAB=-1, то квадратный корень извлекается в аналитическом виде и получаем результат для весов в виде:
Итак, если портфель состоит только из двух активов, и доходности этих активов антикоррелируют, то получаем идеальную ситуацию: портфель становится безрисковым, если веса активов взаимно пропорциональны риску друг друга.
Снова посмотрим, как это всё выглядит на временных графиках для какого-нибудь синтетического примера. На рис. 9. показано поведение цен двух активов с сильной антикорреляцией их доходностей за 43 торговых дня.
Рис. 9. Изменение цен двух активов с сильной антикорреляцией их доходностей за 43 торговых дня
Эти цены локально меняются очень по-разному. Когда цена одного актива растет, то цена другого падает, и, наоборот. Доходности этих активов в этом примере почти антикоррелируют друг с другом, с коэффициентом корреляции очень близким к минус единице: Corr = -0.91.
Средняя доходность первого актива на интервале 43 торговых дня <R>1=0.045, а риск S1=0.206. Средняя доходность второго актива <R>2=0.020, а риск S2=0.075.
На рис. 10 показан график изменения доходностей этих активов за 43 дня. Хорошо видно, что, когда доходность первого актива становится положительной, доходность второго актива становится отрицательной, и, наоборот.
Поэтому убытки этих активов не складываются друг с другом. Когда доходность более волатильного актива сильно уходит в минус, в это время менее волатильный актив находится в плюсе по своей доходности и частично компенсирует убытки более волатильного актива. Понятно, что если долю менее волатильного актива взять побольше, а долю более волатильного поменьше, то можно так подобрать эти доли, что ухода в минус почти не будет.
Рис. 10. Изменение доходностей двух сильно антикоррелирующих активов за 43 торговых дня, их средние доходности и диапазоны риска.
На этом же рис. 10 горизонтальными штрихпунктирными линиями показаны средние за интервал 43 торговых дня доходности этих активов. А тонкими пунктирными линиями показаны диапазоны риска активов. Это отклонения доходности вверх и вниз от среднего значения на величину стандартного отклонения, то есть на величину риска. У актива с большим риском диапазон риска шире, чем у актива с меньшим риском.
На рис. 11 показаны доходности двух портфелей, составленных из этих активов. Кривая синего цвета соответствует такому портфелю, который состоит из этих активов с весовыми коэффициентами W1 = W2 = 0.5. Хорошо видно, что даже такое наивное распределение средств уже сильно уменьшает волатильность портфеля. Риск портфеля стал всего S12 = 0.070. Это меньше, чем риски и первого и второго активов.
Рис. 11. Доходности портфеля с активами, у которых доходности сильно антикоррелируют.
Но наивная диверсификация в данном примере не является самой лучшей возможной диверсификацией. Если распределить средства инвестора в портфеле с такими весами, как W1 = 0.267 и W2 = 0.733, то получим колебания доходности портфеля еще меньше. На рис. 11 изменение доходности такого оптимального портфеля показана кривой красного цвета.
Если бы в данном примере у нас была бы точная антикорреляция (Corr12 = -1), то мы получили бы не кривую линию красного цвета, а прямую горизонтальную линию на уровне доходности <R>12 = W1<R>1 + W2<R>2 = 0.027. Но наш пример более реалистичен, и, как было сказано выше, коэффициент корреляции у нас не равен точно минус единице, а только близок к минус единице (Corr = -0.91).
Поэтому оптимальный портфель с минимальным риском у нас не имеет нулевого риска. Но его риск очень маленький: S12 = 0.057. Это меньше, чем риск наивного портфеля с одинаковыми весами, который, как было уже показано выше, равен S12 = 0.070.
1.2.3. Пример с тремя активами
На примере портфеля с двумя активами мы всё так очень подробно рассмотрели для того, чтобы читатель понимал теорию Марковица на интуитивном уровне. Далее считаем, что интуитивно всё уже понятно, поэтому дальнейшее рассмотрение проведем уже не так подробно.
Если активов в портфеле будет уже не 2, а 3, то всевозможные портфели с разными весами этих активов будут располагаться уже не на кривой линии, а на некоторой площади на плоскости "Риск-Доходность".
Добавим к активам A и B из нашего синтетического примера еще третий актив C со средней доходностью <R>C = 0.0752 и риском SC = 0.092.
1.2.3.1. Все коэффициенты корреляции равны единице
Если все 3 актива максимально коррелируют друг с другом с парными коэффициентами корреляции равными единице (CorrAB = CorrBC = CorrCA = +1), то на графике «Риск-Доходность» все возможные портфели располагаются внутри треугольника ABC, как показано на рис. 12. На рисунке эти точки внутри треугольника показаны серым цветом.
Отрезок AB соответствует таким портфелям, когда актив C имеет нулевой вес WC = 0. Этот случай мы рассматривали в предыдущем разделе. Аналогично, отрезок BC соответствует таким портфелям, когда актив A имеет нулевой вес WA = 0. И, наконец, отрезок CA соответствует таким портфелям, когда актив B имеет нулевой вес WB = 0.
Серые точки внутри треугольника ABC соответствуют ситуации, когда все 3 веса отличаются от нуля. В центре серого треугольника находится портфель с равными весами активов: WA = WB = WC = 1/3.