Литмир - Электронная Библиотека
A
A

Итак, подведем итог. В классической ньютоновской картине мира Вселенная функционирует, подчиняясь девяти законам природы: трем законам механики, четырем законам электричества и магнетизма и двум законами термодинамик. Все, что происходит в любой точке Вселенной, в конечном счете можно описать и объяснить системой уравнений, которая легко поместится на футболке. И тем не менее эта картина Вселенной, при всей ее красоте и убедительности, оказывается в конечном счете слишком упрощенной.

Новая физика

Можно иногда услышать, что главные открытия физики XX века – теория относительности и квантовая механика – доказали, что ньютоновское мировоззрение полностью ошибочно. Мы категорически не согласны. Ньютоновский взгляд на Вселенную основан на результатах экспериментов, производимых над объектами, которые, как мы уже говорили выше, можно отнести в категорию предметов нормальных размеров, движущихся с нормальной скоростью. Новая физика расширила кругозор научного мировоззрения, вынесла его далеко за эти пределы. Теория относительности, например, рассматривает объекты, движущиеся со скоростью, близкой к скорости света, или обладающие огромной массой. Квантовая механика, напротив, занимается изучением объектов атомного или субатомного масштаба. Но если мы применим законы обеих этих областей науки к предметам нормальных размеров, движущимся с нормальной скоростью, то перед нами предстанут уже знакомые законы ньютоновской Вселенной, которые мы перечислили выше. Поэтому инженеры, проектирующие скоростные автомагистрали и железнодорожные мосты, продолжают изучать ньютоновскую механику.

Получается, что в лучшем случае новые области науки могут разве что добавить парочку новых законов к уже сформулированной «великолепной девятке». Теория относительности, к примеру, построена на следующем базовом принципе: законы природы неизменны во всех системах отсчета. В оставшейся части нашей книги мы довольно редко будем обращаться к этой теории – но она играет важную роль в поисках планет, странствующих в межзвездном пространстве в одиночку. Мы называем такие планеты бродячими (см. главу 11.)

Квантовая механика очень отличается от теории относительности. Внутри атома физические явления протекают совершенно иначе, не так, как в нашем повседневном бытовом опыте. В мире квантов нет ничего постоянного и непрерывного, и при этом почти все явления взаимосвязаны и влияют друг на друга. И хотя пока ученые не пришли к единому мнению о том, как интерпретировать получаемые в этой странной области знаний результаты, в большинстве случаев мы будем касаться всего нескольких общих принципов, которые тоже можно добавить к нашему списку законов, описывающих устройство Вселенной.

Самые важные для наших целей открытия квантовой механики состоят в том, как она объясняет излучение и поглощение света атомами. В отличие от планет, обращающихся по орбитам вокруг звезд, электроны неспособны занимать любую произвольную орбиту вокруг ядра атома. Их выбор ограничен строго определенными вариантами. Атом испускает электромагнитное излучение (в том числе – видимый свет), когда электрон перемещается с более далекой от ядра орбиты на более близкую. Верно и обратное: атом поглощает излучение, когда электрон перемещается с внутренней орбиты на внешнюю. Частота этого излучения, испускаемого или поглощаемого, – для видимого света она соответствует цвету лучей – зависит от разности энергий на исходной и конечной орбитах. Так возможные положения орбит у атомов одного химического элемента отличаются от их положений у атомов другого, спектр испускаемого или поглощаемого атомом излучения выступает в роли своеобразного «отпечатка пальца», помогая нам распознать присутствие тех или иных атомов. На этом базируется целая область науки, называемая спектроскопией, – мы поговорим о ней в главе 5. Там мы расскажем, о том, как данное частное следствие квантовой механики дает нам прекрасный инструмент для определения возможности жизни возле других звезд.

Итак, представление об устройстве Вселенной сводится к поиску немногочисленных универсальных законов наподобие тех, о которых мы уже говорили выше. Громадное упрощение картины мира, начавшееся с законов Ньютона, дает нам надежду на то, что упрощение того же типа произойдет и в будущем, когда мы лучше разберемся в новых областях физики. Эта надежда ведет современных физиков в их попытках создать то, что (отчасти в шутку) называют «теорией всего». Этот идеал – единое уравнение, из которого можно было бы вывести как все уже перечисленные принципы, так и те, что еще только предстоит открыть. Такая теория, как следует из самого ее названия, объяснила бы все.

Конечно, пока очень далеко от создания подобной теории, а многие серьезные ученые вообще сомневаются в том, что она может существовать. Кроме того, в наших поисках внеземной жизни эта теория нам совершенно не нужна. Но согласитесь, интересно пофантазировать, как может выглядеть техника будущего, основанная на достижениях «теории всего».

Принцип Коперника

Еще один глобальный принцип, который будет указывать нам путь в исследованиях внеземной жизни, тесно связан с именем польского клирика Николая Коперника (1473–1543), прославившегося созданием математической модели Солнечной системы с Солнцем, а не Землей в качестве центра. Это стало первым шагом на долгом пути к пониманию того очевидного для нас сейчас факта, что наша родная планета не представляет из собой ничего особенного и уникального. Это просто каменный шар, обращающийся вокруг совершенно обычной звезды в ничем не примечательной части такой же заурядной галактики – одной из миллиардов галактик в только наблюдаемой части Вселенной. Некоторых людей такой взгляд на Вселенную глубоко огорчает – по их мнению, он каким‐то образом принижает человечество. Мы предпочитаем смотреть на этот шаг на пути познания мира иначе: для нас в осознании заурядности нашей планеты таится драгоценный дар. Ведь из него следует, что законы природы, которые мы открываем сегодня и сейчас, действуют во всей Вселенной и остаются верными во все времена.

Древние греки, первопроходцы на пути человечества к современной науке, представляли себе Вселенную совершенно иначе. В их космологии Земля находилась в центре мироздания и занимала особое, отличное от всего остального мира положение. Вся материя на Земле состояла из четырех элементов: собственно земли, огня, воздуха и воды. В небесах, однако, существовал еще один, пятый, элемент, называемый эфиром или квинтэссенцией. Кроме того, на небесах все было идеальным – небесные сферы несли планеты и звезды по (более или менее) круговым маршрутам, и, в отличие от Земли, небесные тела не имели никакого изъяна. (Таким образом, обнаруженные Галилеем при помощи его телескопа лунные кратеры и пятна на Солнце не умещались в стройную картину аристотелевской космологии.) Другими словами, у древних греков было две системы законов природы – одна действовала на Земле, другая на небе.

Устранил это двузаконие наш старый друг Исаак Ньютон. Если верить народной истории, в том виде, в каком она дошла до нас много лет спустя, однажды, прогуливаясь в родительском саду, Ньютон увидел, как с ветки упало яблоко. Тут же, подняв глаза к небу, он разглядел в небе Луну. Он знал, что яблоки падают под действием притяжения Змли – силы, подробно изученной и описанной Галилеем и другими учеными. Однако кроме этого Ньютону было известно, что Луна движется не по прямой линии, а по круговой орбите вокруг Земли. Из своего первого закона движения (см. выше) Ньютон сделал вывод, что на Луну должна действовать сила для того, чтобы она оставалась на своей орбите, – иначе Луна тут же улетела бы в космическое пространство. И тогда Ньютон задал себе вопрос, который нам теперь кажется очевидным, но от того, кто задает его в первый раз, требует гениальности: не может ли быть так, что сила, которая заставляет яблоко падать вниз, и сила, которая удерживает и Луну на ее орбите, – это одна и та же сила?

6
{"b":"889361","o":1}