Литмир - Электронная Библиотека
Содержание  
A
A

Но как высота подъёма маятника связана со скоростью пули? Всё дело в той кинетической энергии, которую приобретает маятник от пули – в наивысшей точке подъёма маятника вся его кинетическая энергия переходит в потенциальную. Измерив высоту подъёма, мы рассчитаем потенциальную энергию маятника (по формуле E=mgh, где m – масса маятника вместе с пулей, h – высота полёта, а g – ускорение свободного падения), отсюда найдём кинетическую энергию (E=mv2/2, где v – скорость движения маятника), а значит – скорость движения маятника. Наконец, закон сохранения количества движения (исходя из соотношения mv=(M+m)v1, где m – масса пули, M – масса маятника, v – скорость пули, v1 – скорость маятника после попадания пули) поможет из скорости маятника получить скорость пули.

Сегодня существует масса разновидностей баллистических маятников – они выполняются в виде небольших пушек с зарядами, в виде стендов с реактивными двигателями, и т.д. Но все они основаны на одних законах, поэтому позволяют легко измерять скорости, импульсы и многие другие физические величины различных предметов и приборов.

Как фигурист изменяет скорость своего вращения?

Наверняка, вы не раз видели, как фигуристы выполняют самые удивительные трюки – это красиво и очень интересно. Но обращали ли вы внимание на то, как фигуристы вращаются? Вот спортсмен закручивается с раскинутыми руками, затем притягивает руки к груди, и резко увеличивает скорость вращения – это они могут проделывать в полёте, в приседе, и даже в паре. Но как у фигуристов получается так раскручиваться, ведь они, кажется, даже не прилагают для этого особых усилий?

Фигуристы опираются на закон сохранения момента импульса (или закон сохранения углового момента), который сводится к следующему: каждое вращающееся тело имеет некоторое количество движения, или момент импульса, который без воздействия внешних сил со временем остаётся неизменным. Для вращающегося тела также присуща ещё одна величина – момент инерции, который зависит от массы и конфигурации тела. Например, большой маховик обладает высоким моментом инерции, так как вращающаяся масса находится на некотором расстоянии от центра вращения – такой маховик трудно раскрутить и не менее трудно остановить. А стержень такой же массы имеет гораздо меньший момент инерции, так как вся вращающаяся масса сосредоточена у оси вращения.

Наконец, мы подошли к самому главному: момент импульса вращающегося тела находится в простой зависимости от угловой скорости и от момента инерции: L = Iω (где L – момент импульса, I – момент инерции, ω – угловая скорость). Теперь становится понятным, что если тело раскрутить и уменьшить его протяжённость, то оно вследствие уменьшения момента инерции станет вращаться быстрее, и наоборот.

В этом и заключается секрет фигуристов. Раскручиваясь, спортсмен приобретает некоторый момент импульса. Притянув руки к груди, фигурист уменьшает момент инерции, и вследствие закона сохранения момента импульса его скорость вращения возрастает. Для остановки вращения фигурист сначала разводит руки в стороны (увеличивает момент инерции), а затем гасит оставшуюся скорость трением коньков об лёд.

Закон сохранения момента импульса является одним из фундаментальных законов сохранения в природе, и играет важную роль во Вселенной. Например, при взрывах Сверхновых звёзд возникают нейтронные звезды или чёрные дыры, которые имеют огромную скорость вращения – до нескольких тысяч оборотов в секунду! Это вращение возникает вследствие описанных выше эффектов: Сверхновыми взрываются массивные (в 8 – 10 раз тяжелее Солнца) и большие (диаметром в миллионы километров) звезды, имеющие невысокую скорость вращения. В момент взрыва светило сбрасывает с себя внешнюю оболочку, а на его месте остаётся тяжёлая нейтронная звезда (или даже чёрная дыра) диаметром в лучшем случае километров 30. Такое катастрофическое уменьшение момента инерции и приводит к колоссальному увеличению скорости вращения. Конечно, это только один из примеров действия закона, но он очень показателен.

Так что в следующий раз помните, какие важные законы стоят за красотой элементов фигурного катания.

Почему тормозит автомобиль?

При необходимости остановить автомобиль водитель жмёт на педаль тормоза, и машина замедляет своё движение. А вы задавались когда-нибудь вопросом: почему вообще работают тормоза? Если разобраться в этом, то ответ может показаться несколько неожиданным.

Движущаяся машина имеет некоторую кинетическую энергию, и чем выше скорость, тем выше энергия. Для остановки следует уменьшить количество кинетической энергии – как это сделать? Самое простое – поставить перед движущимся телом препятствие, при ударе о которое вся кинетическая энергия перейдёт… А во что она перейдёт? По большей части – в тепло. Тело и препятствие в результате столкновения нагреются, а некоторая часть энергии перейдёт в деформации. Можно использовать и более щадящий способ: перед движущимся телом поместить поверхность с высоким коэффициентом трения или просто песок. В этом случае вся энергия за счёт сил трения тоже перейдёт в тепло и деформации.

Для транспорта эти способы не годятся, хотя последний из них представляет определённый интерес, но в изменённом виде – нужно поверхность с высоким коэффициентом трения возить с собой. Например, на колёса поставить подвижные и неподвижные детали, которые в нужный момент приводились бы в соприкосновение и испытывали трение. Именно так и устроены фрикционные тормоза – есть диски или барабаны, вращающиеся вместе с колёсами, и неподвижные тормозные колодки, которые в момент остановки плотно прижимаются к дискам.

Таким образом, автомобили, поезда и другие колёсные транспортные средства тормозят потому, что их кинетическая энергия с помощью силы трения переводится в тепло, которое просто-напросто рассеивается. Заметим, что автомобили обладают большой кинетической энергией, поэтому детали тормозов испытывают большой нагрев – нередко они раскаляются докрасна!

НЕОЧЕВИДНОЕ В ОЧЕВИДНОМ

Существуют вопросы, ответы на которые кажутся нам очевидными и само собой разумеющимися. Но стоит копнуть поглубже, как всё встаёт с ног на голову, и в очевидном обнаруживается неочевидное.

Сколько весит килограмм?

Что за странный вопрос? Ведь килограмм – он и есть килограмм! Но не спешите с выводами, ведь здесь мы путаем два хотя и связанных, но разных понятия – вес и массу.

Если говорить просто, то масса – это величина, определяющая количество материи в теле или меру его инертности. Масса является фундаментальной величиной, она присуща всем телам во Вселенной и почти всем частицам – массы лишены только фотоны, которые из-за этого всегда движутся со скоростью света.

Другое дело – вес. Это сила, с которой тело действует на опору или подвес. И самое интересное, что вес одного тела, оказавшегося в разных условиях, может изменяться от нуля до невообразимых величин (но не до бесконечности!). Мы всегда имеем дело с весом, возникающим в поле силы тяжести нашей родной планеты. Но и в обыденной жизни мы постоянно сталкиваемся с изменениями веса, хотя и с краткосрочными: при ускорении и торможении автомобиля, при начале движения лифта вверх и вниз, на каруселях и даже просто в прыжке.

Избавиться от массы невозможно, а лишиться веса – легко. Даже если вы просто подпрыгните, то на краткий миг не будете весить ровным счётом ничего! Ведь в этот момент вы не действуете на опору, а значит – нет силы, нет и веса. Ещё дольше этот эффект можно наблюдать при прыжке с парашютом. Но полная невесомость достигается в космических кораблях. И вы не раз видели кадры парящих космонавтов и необычное поведение предметов внутри космического корабля.

6
{"b":"875208","o":1}