Слово “накладывается” надо понимать следующим образом: в каждый момент времени происходит сложение соответствующих такому времени значений векторов скоростей суточного и годового движений. Если мы рассматриваем место на поверхности Земли, которое находится на нулевой широте (экваторе), то для такого места, максимальное значение (амплитуда) синусоиды суточного движения равно – 0,5 км/сек. Если мы рассматриваем место, которое находится на определенной широте, то цифру 0,5 км/сек, необходимо умножить на косинус такой широты, и, полученный результат, помножить на синус 23 градусов, поскольку плоскость экватора и плоскость вращения Земли вокруг Солнца, наклонены друг к другу под углом 23 градуса. Если годовое и суточное движения Земли наложить на линию, лежащую в плоскости экватора, то амплитуда синусоиды суточного движения не изменится (с учетом широты места), а амплитуда синусоиды годового движения изменится за счет умножения на синус 23 градусов. Однако, совершенно очевидно, что суммарный вектор скорости перемещения галактики и Солнца вокруг ее центра, не лежит ни в плоскости экватора, ни в плоскости эклиптики (плоскости вращения Земли вокруг Солнца). Нам интересно, каким образом, синусоиды годового и суточного движения Земли отобразятся на вектор скорости суммарного перемещения галактики и Солнца вокруг центра галактики. Возможны различные варианты.
Начнем с рассмотрения маловероятного варианта, когда такой суммарный вектор лежит в плоскости эклиптики.
В этом случае синусоида годового движения полностью отобразится на таком суммарном векторе. Причем, свое максимальное значение амплитуда синусоиды годового движения (30 км/сек) примет в тот момент, когда вектор скорости годового движения совместится с суммарным вектором и эти два вектора будут одинаково направлены. Минимальное значение амплитуда примет при разнонаправленности этих двух векторов. Имеет смысл запомнить даты на годовом календаре, когда значения амплитуд синусоиды годового движения принимают максимальное и минимальное значения. В дальнейших размышлениях это нам пригодится.
Если суммарный вектор лежит в плоскости экватора, а устройство для измерения скоростей находится на экваторе, то синусоида суточного движения полностью отобразится на таком суммарном векторе (максимальное значение амплитуды такой синусоиды будет – 0,5 км/сек). Если, например, такой суммарный вектор перпендикулярен плоскости экватора Земли, то синусоида суточного движения никак не отобразится на таком суммарном векторе.
Если такой суммарный вектор перпендикулярен плоскости эклиптики, то синусоида годового движения никак не отобразится на таком суммарном векторе. Скорее всего, что такой суммарный вектор с плоскостью эклиптики и плоскостью экватора образуют какие-то углы, значения которых мы не знаем, поскольку не знаем, каким образом плоскость солнечной системы ориентирована относительно плоскости галактики, и под каким углом вектор перемещения галактики ориентирован относительно плоскости галактики. То есть, мы не знаем, каким образом галактика перемещается в пространстве. Летит ли вперед ребром или куда-то падает плашмя.
Но, если мы в каком-либо месте поверхности Земли сумеем построить пространственный суммарный вектор скоростей суточного, годового и галактического перемещений, то это позволит нам определить взаимное расположение всех плоскостей. Например, плоскости экватора, плоскости годового вращения Земли, плоскости вращения Солнца вокруг центра галактики и плоскости вращения галактики вокруг некоего, общего для многих галактик, центра.
Имеет смысл рассмотреть величину методической погрешности на тот случай, когда можно пренебречь учетом линейной скорости при вращении Земли вокруг своей оси. Пусть, величина суммарного вектора, полученного при сложении векторов скоростей перемещения галактики, вращения Солнца вокруг центра галактики, вращения Земли вокруг Солнца, равен – 1000 км/сек. Будем считать, что такой суммарный вектор целиком лежит в плоскости экватора. Тогда, синусоида суточного движения Земли полностью отобразится на таком суммарном векторе. Амплитуда такой синусоиды равна – 0,5 км/сек. Если суточное движение проигнорировать (не учитывать), то получим методическую ошибку в расчетах углового положения в пространстве суммарного вектора всех перемещений, за исключением суточного:
А = (0.5 км/сек.)/1000 км/сек. = 0.0005 радиан = 1.7 угловых минут.
В ряде задач такой незначительной методической погрешностью можно пренебречь и не учитывать вращение Земли вокруг своей оси при определении местоположения движущегося объекта.
Вместе с тем, в информации о линейной скорости Земли при ее вращении вокруг собственной оси, содержится подсказка о широте, на которой находится движущийся объект. Поэтому, при решении навигационной задачи, целесообразнее произвести учет движения Земли вокруг своей оси. Нам осталось рассмотреть орбитальное движение спутников вокруг тяготеющей массы, например, Земли.
Нас по-прежнему будет интересовать вектор линейной скорости спутника. Такой вектор является весьма информативным фактором при определении плоскостных параметров орбиты спутника. Расположен он в плоскости орбиты касательно к траектории спутника. Для круговых и эллиптических орбит вокруг Земли, величина такого вектора скорости спутника варьируется в пределах от 7.2 км/сек. и выше. Если удастся вычленить такой вектор и характер его изменения во времени из суммарного вектора скорости рассмотренных ранее движущихся объектов (галактики, Солнца вокруг центра галактики, Земли вокруг Солнца), то получим информативную измеряемую величину при решении автономной навигационной задачи для спутников. Итак, осталась самая малость: научиться измерять и строить на поверхности Земли (или на подлодках под водой, или на космических аппаратах) суммарный вектор скоростей перемещения галактики, Земли и Солнца. Так сказать, вопреки принципу относительности Маха, Эйнштейна, Галилея.
3. Неподвижная сетка. Ошибочное овеществление пространства и времени
В работах Исаака Ньютона употребляются такие выражения, как, “неподвижная сетка”, “неподвижная решетка”. Что в эти понятия вкладывал великий Ньютон? Он считал, что абсолютным фоном любого движения является пространство. Его пространство было подобно миллиметровке с системой координат, и любое движение происходило как бы на фоне такой решетки. “Абсолютное пространство по собственной природе его и безотносительно к чему бы то ни было внешнему, всегда остается однородным и неподвижным. Исаак Ньютон. 1687 год”.
Австрийский философ и физик, Эрнст Мах, однако, не был согласен с Ньютоном. В конце 19-го века он утверждал, что говорить о движении физического тела можно только в том случае, когда движение фиксируется, наблюдается и измеряется относительно другого физического тела, но не решетки. Что решетка (или сетка Ньютона) – это некий абстрактный вымысел, что за ним не стоит ничего материального. В какой-то степени, Мах был прав. Поскольку Ньютон не обнаружил, не указал на нечто материальное, создающее неподвижную сетку или неподвижную решетку.
Мах и не собирался искать некий материальный объект, пригодный к рассмотрению в качестве неподвижной сетки или неподвижной решетки. Мах полагал, что, поскольку мяч и во Франции, и в Австралии катится по земле одинаково, то пространственная решетка – штука бессмысленная. Единственное, что может влиять на то, как катится мяч, это притяжение. Ребенка, катающегося на карусели, притягивают к себе далекие звезды. Это и есть принцип Маха, гласящий, что “масса, находящаяся там, влияет на инерцию здесь”. Словосочетание “принцип Маха” придумал Альберт Эйнштейн.
Инерция, название которой происходит от латинского слова “лень”, сообщает нам о том, насколько трудно сдвинуть какое-либо тело. Объект, обладающий большой инерцией, сопротивляется попыткам привести его в движение или изменить такое движение.
Итальянский астроном Галилео Галилей еще в 17-ом веке выдвинул принцип инерции: если тело оставить в покое и не прилагать к нему никаких сил, его состояние останется неизменным. Если тело движется, то оно и продолжит двигаться с той же скоростью и в том же направлении. Если покоится, то и продолжит покоиться. Ньютон усовершенствовал эту идею, обратив ее в первый закон Ньютона: “Тела движутся по прямой линии с постоянной скоростью, пока на них не подействует сила, меняющая их скорость и (или) направление движения”.