Литмир - Электронная Библиотека
Содержание  
A
A

Можно представить себе космические джеты в виде струй, вылетающих из сопла реактивного двигателя самолета. Там горячий газ ускоряется и выбрасывается из сопла на высокой скорости. Чем больше пилот нажимает на газ, тем более мощной становится тяга этих двигателей, тем громче они ревут и сильнее раскаляются. В нашей модели квазара двигатель формировали сильные магнитные поля, а мощность его определялась тем, сколько материи поглотила черная дыра. Если хотя бы процентов десять той энергии, которая производится при падении материи внутрь черной дыры, превратились в магнитные поля и джеты, это могло бы объяснить яркое радиоизлучение квазаров. Поскольку черные дыры – вообще‐то относительно простые существа, мы не понимали, чем Стрелец А* может принципиально отличаться от своих гораздо более ярких братьев и сестер.

Квазары съедают примерно по одному Солнцу в год. Если бы наша черная дыра поглощала даже в десять миллионов раз меньшую массу, этой энергии все равно хватило бы для производства наблюдаемого радиоизлучения Стрельца А*. И в таком случае можно было бы сказать, что наш галактический центр – черная дыра, сидящая на голодной диете. Хотя определение голодная тут вряд ли уместно, поскольку рацион, составляющий одну десятимиллионную массы Солнца, это все равно целых три Луны в год. Любая маленькая звездная черная дыра, которых в Млечном Пути сотни миллионов, лопнула бы от такого количества[98].

Мы также смогли в своей модели объяснить размер радиоисточника, поскольку из‐за его минимальной мощности струя радиоплазмы была не больше, чем измеренная Кричбаумом с помощью РСДБ. Этот джет поместился бы внутри земной орбиты – сущий пупырышек по сравнению с джетами квазаров. Неудивительно, что на расстоянии 27 000 световых лет его было не очень хорошо видно.

Мы отправили нашу теоретическую работу в академический журнал Astronomy & Astrophysics одновременно с работой Кричбаума по наблюдениям с помощью радиоинтерферометра со сверхдлинной базой. Но тут мне пришло в голову, что осталась одна странность. В нашей модели радиоизлучение было подобно радуге – излучение различных частот спектра исходило из точек, расположенных на разном расстоянии от центра. Модель предсказывала, что по мере уменьшения длины волны источник этого радиоизлучения должен приближаться к черной дыре. На длине волны 7 миллиметров, которую Кричбаум только что использовал в своих измерениях, плазма все еще исходила из источника, расположенного на расстоянии одной астрономической единицы от черной дыры, то есть примерно на расстоянии от Земли до Солнца. Но при длине волны 1 миллиметр и короче источник радиоизлучения должен был бы находиться непосредственно в окрестности горизонта событий. Если перейти на язык цветов обычной радуги, это радиоизлучение должно соответствовать фиолетовому цвету самой внутренней дуги.

Значит, обнаруженное Мезгером и Зилкой излучение на длине волны примерно 1 миллиметр исходило непосредственно из окрестности горизонта событий? В пользу этой гипотезы говорил тот факт, что излучение как бы исчезало при переходе к еще более коротким длинам волн. Газ там больше не светился, потому что он уже исчезал за горизонтом событий?

Высказав Кричбауму свои соображения, я задал ему вопрос: возможно ли провести РСДБ-эксперимент на этих частотах, чтобы увидеть горизонт событий? Он с улыбкой ответил: “Да, мы, конечно, очень хотели бы провести такой эксперимент, но, к сожалению, Земля для этого недостаточно велика”.

В 1979 году Общество Макса Планка вместе с Национальным центром научных исследований во Франции и Национальным институтом географии в Испании основало новый институт – Институт миллиметровой радиоастрономии (IRAM) в Гренобле. В его распоряжении оказались два новых телескопа миллиметрового диапазона в Испании, а Боннский институт Макса Планка в кооперации с местным университетом построил третий телескоп в Аризоне. Предполагалось, что эти радиоантенны можно будет соединять для проведения РСДБ-экспериментов. Но для получения качественных изображений телескопов все еще не хватало. Кроме того, по словам Кричбаума, черная дыра в центре Млечного Пути была слишком маленькой – как и большинство остальных. Даже с помощью телескопа размером с Землю на такой длине волны увидеть ее горизонт событий с достаточной четкостью было бы невозможно. “Жаль”, – подумал я, но с тех пор эта идея засела у меня в голове, и я с ней так и не распрощался.

Молчаливое большинство

Моя докторская диссертация, скомпонованная из пяти разных статей в академических журналах, была полностью готова летом 1994 года, после двух лет лихорадочной работы. Я назвал ее “Голодные дыры и активные ядра”. Да, черные дыры именно “голодные”, потому что, вопреки общему мнению, большинство их – вовсе не дико прожорливые монстры. Они очень хорошо воспитаны и едят только то, что им подают. Мы воображаем их гигантами, но в масштабах галактики это просто маленькие птенчики. И, как и все птенцы, черные дыры должны сидеть в своем гнезде и ждать, пока мать-галактика не накормит их пылью и звездами. Если этого не происходит, они чахнут, становятся темными и тихими и перестают расти – совсем как Стрелец А*. Но никогда не умолкают навеки.

В своей диссертации я развил тезис о том, что плотное радиоизлучение черных дыр всюду подчиняется одному и тому же принципу: это излучение горячего газа, выбрасываемого магнитными полями с внутреннего края аккреционного диска в виде джетов. Струи, вылетающие из черной дыры, и газ, падающий в черную дыру из аккреционного диска, тесно связаны друг с другом и практически не могут существовать по отдельности. Должно выполняться универсальное соотношение между аккрецией диска и тем, что выбрасывается в виде джета. Говоря попросту, чем меньше попадает внутрь, тем меньше и выбрасывается[99].

На изображениях черных дыр в радиодиапазоне они выглядят как изрыгающие огонь драконы. Некоторые из них невероятно мощные и выбрасывают гигантские струи огня на огромные расстояния. Другие – слабые и вялые, и из их уст вылетает лишь легкое дуновение. Но почти все они производят струи, и в этом отношении квазары-обжоры-экстраверты ничем не отличаются от голодающих отшельников нашего Млечного Пути и соседних галактик. Да, с помощью этих джетов можно объяснить даже радиоизлучение маленьких звездных черных дыр. Просто важно сосредоточиться на излучении в непосредственной близости от основания джета (глотки) и не отвлекаться на наблюдения за гигантскими огненными плазменными струями. Вы должны точно знать, где искать.

Наконец, в моей диссертации утверждалось, что одни и те же физические законы работают в квазарах, звездных черных дырах и галактическом центре. Или, научно выражаясь, черные дыры масштабно-инвариантны и в окрестности их горизонтов событий всегда выглядят одинаково – неважно, малы они или велики. Оказывается, черные дыры невероятно предсказуемы. У них нет ни волос, ни неврозов, ни прыщей. Почему же тогда то, что происходит в непосредственной близости от черных дыр, не должно выглядеть одинаково для каждой из них – по крайней мере, когда вы заглядываете им прямо в глотку[100]?

Большинство черных дыр не особенно привлекают к себе внимание. Я когда‐то назвал их “молчаливым большинством”, потому что они похожи на людей: лишь немногие избранные покидают свою скорлупу и становятся публичными личностями, звездами (такие ведут себя эксцентрично, и все с интересом наблюдают за ними), в то время как остальные предпочитают не высовываться. И вот в 90‐е, после шумихи, поднятой вокруг квазаров, фокус интереса к черным дырам даже в средствах массовой информации сместился на среднестатистического представителя этого космического народа. А инициатором такого сдвига общественного внимания стал космический телескоп “Хаббл”.

Этот телескоп, обошедшийся во много миллиардов долларов, был запущен в космос в 1990 году и первое время вызывал только негативную реакцию, потому что его зеркало изначально было неправильно отшлифовано. Но в ходе драматической спасательной операции, проведенной в космической обсерватории, астронавты установили на “Хаббл” корректирующую оптику (“очки”). После этого телескоп смог получить изображения центров соседних с нами галактик с невиданной ранее четкостью, и его измерения подтвердили то, что предположили астрономы, когда рассматривали изображения, полученные с помощью земных телескопов: в других галактиках звезды тоже обращались с необычно высокой скоростью вокруг своих галактических центров. Но немедленно возник вопрос: находились ли и в центрах этих галактик черные дыры?

вернуться

98

Когда слишком много вещества падает на черную дыру, возникает такое сильное излучение, что газ сдувается его радиационным давлением. Максимальный предел аккреции массы называется пределом Эддингтона.

вернуться

99

Heino Falcke and Peter L. Biermann. The Jet-Disk Symbiosis. I. Radio to X-ray Emission Models for Quasars. // Astronomy and Astrophysics 293 (1995): 665–82. https://ui.adsabs.harvard.edu/abs/1995A&A…293..665F.

вернуться

100

Heino Falcke and Peter L. Biermann. The Jet/Disk Symbiosis. Iii. What the Radio Cores in GRS 1915+105, NGC 4258, M 81, and SGR A* Tell Us About Accreting Black Holes. // Astronomy and Astrophysics 342 (1999): 49–56. https://ui.adsabs.harvard.edu/abs/1999A&A…342…49F.

35
{"b":"872382","o":1}