С улучшением симметрии пиков, обусловленным малой адсорбцией на стенках, сильно уменьшается разбавление веществ и пик становится выше. Поэтому снижения границы обнаружения можно добиться не только улучшая детектирование, но также в значительной мере за счет сокращения уширения полос. Этот пример ясно показывает, что только для пиков с высокой интенсивностью (малым разбавлением) достигается низкий порог обнаружения.
Из-за высокой концентрации добавок электропроводность буфера становится такой большой, что для разделения белков можно применять поле только небольшой напряженности, что ведет к удлинению времени анализа.
Устранение адсорбции на стенках будет более подробно описано в разделе, посвященном разделению белков.
5.5. Перегрузка системы разделения
Явление перегрузки наблюдается тогда, когда в систему разделения вводится слишком большое количество пробы. Так как в КЭ нет стационарной фазы, а разделительный объем ограничивается несколькими мкл, легко наступает явление перегрузки. Прежде всего, к перегрузке может привести неправильная регулировка прибора или слишком большая концентрация пробы. В качестве рабочего правила можно принять, что пробой может быть заполнено максимум 1–2 % от объема капилляра. Для капилляра длиной 50 см это соответствует максимальной длине зоны пробы 10 мм.
Рис. 17. Уширение полос из-за, адсорбции на стенках…
Условия: капилляр — 50 мкм; 42/50 см; поле — 300 В/см; буфер — 50 мМ фосфат, 20 мМ сульфат лития, 10–50 мМ МП; pH 3.5, ввод пробы давлением, 1 с.; детектирование — 214 нм; проба -0,5 мг/мл лизоцим.
Наряду с объемной перегрузкой в случае слишком больших времен ввода при высокой концентрации пробы наблюдается также перегрузка по массе. Перегрузка по массе отчетливо видна при рассмотрении зависимости значения Н от концентрации пробы. При равном времени ввода проб увеличивается только количество введенной пробы, а не ее объем. Доля σVU как вклада в уширение полос остается при этом постоянной. В качестве примера на рис. 18 показан эффект перегрузки из-за большого объема и высокой концентрации пробы.
Время ввода пробы повышается с 1 до 5 с, так что, хотя порог обнаружения и понижается примерно до 0.2 мМ, одновременно возрастает значение Н, поэтому вклад перегрузки по объему увеличивается. Отсюда видно, что вкладом перегрузки по объему в уширение полос пренебречь нельзя Даже при маленькой концентрации в области, в которой можно пренебречь перегрузкой по массе, значение Н остается при вводе пробы за 5 с больше, чем при вводе за 1 с.
Низкий порог обнаружения при вводе больших объемов пробы нивелируется сильным уширением полос (таблица 4) и связанными с этим трудностями разделения соседних пиков.
Рис. 18. Эффект перегрузки из-за большого объема и концентрации пробы.
Условия: прибор для КЭ — Beckman Р/АСЕ; капилляр — 75 мкм, 65/72 см; поле — 347 В/см; буфер А — 70 мМ борат, pH 8.5; буфер В — 40 мМ борат, pH 8.5; ввод пробы давлением, I или 5 с; проба фенилтриметидаммонийхлорид.
5.6. Наложение профилей потока
При разделении в КЭ всегда надо обращать внимание на то, чтобы не было разницы в уровнях между обоими сосудами с электролитом. Даже при незначительной разнице уровней в капилляре возникает течение, которое приводит к параболическому профилю потока. Этот эффект вызывает дополнительный вклад в уширение полос и сильно зависит от радиуса капилляра. В то время как в случае капилляра с внутренним диаметром 25 мкм этим эффектом можно практически пренебречь, в капилляре диаметром 100 мкм этот эффект сильно ухудшает эффективность разделения и оказывает влияние на разрешение пиков.
5.7. Резюме
Важнейшие причины уширения полос в КЭ представлены в таблице 5.
Таблица 5. Основные причины уширения полос
Причина уширения полос ∙ Примечание
Продольная диффузия ∙ Соответствует теоретическому пределу; увеличивается с уменьшением ММ и с увеличением времени анализа
Термические эффекты ∙ Приводят к конвекции и к локальным изменениям вязкости буфера
Длительность ввода пробы ∙ Должна быть меньше, чем зона, возникающая в результате диффузии; может увеличиваться для того, чтобы снизить порог обнаружения.
Адсорбция пробы на стенках ∙ Причина появления пиков с "хвостами" и плохой воспроизводимости времени миграции
Электродисперсия (различие в подвижностях) ∙ Причина треугольной формы пиков
Различие в уровнях жидкости ∙ Гидродинамический поток с соответствующим профилем потока
6. Аппаратура
Аппаратура для КЭ появилась в продаже с 1988 года, количество предложений постоянно растет. Отдельные приборы принципиальных различий не имеют, так как сами системы разделения очень просты. Различия связаны с вводом пробы, а также числом и видом предлагаемых детекторов. Здесь не дается обзор рынка, а приводятся только типичные требования, предъявляемые к различным элементам аппаратуры.
Обзор рынка дается в журнале Nachr. Tech. Lab. (март 1993).
6.1. Источники напряжения
Напряжение должно регулироваться в области от -30 кВ до +30 кВ и при заданном значении по возможности оставаться постоянным. Максимально допустимый ток составляет 250 мкА, применение существенно больших значений на практике нецелесообразно. Кроме того, оказалось выгодным, если или напряжение, или ток могли бы поддерживаться постоянными независимо друг от друга. Автоматическая переполюсовка источника напряжения необходима только тогда, когда последовательность проб нужно обработать с помощью различных методов анализа и с применением по-разному ориентированного электрического поля.
Запись кривых напряжения и тока может указать на случайные нарушения во время анализа и быть полезной при поиске ошибок. В коммерческих приборах источник высокого напряжения автоматически отключается при открывании емкости, в которой происходит анализ, так что несчастные случаи исключаются. В приборах собственной конструкции, а также в коммерческих модульных приборах КЭ также обязательны меры предосторожности.
6.2. Капилляры
В КЭ обычно применяются кварцевые капилляры диаметром от 50 мкм до 100 мкм. В принципе возможно также применение стеклянных и пластиковых капилляров, которые, однако, не обладают достаточной проницаемостью в коротковолновой УФ-области,
Полиамидный слой кварцевого капилляра перед применением должен быть удален на месте детектирования механически или с помощью выжигания. С недавних пор в продаже появились также капилляры с покрытиями, проницаемыми для УФ-лучей. В большинстве случаев используются необработанные и немодифицированные капилляры. Кварцевые капилляры разных фирм различаются по точности непостоянству внутреннего диаметра, а также обработке внутренней поверхности и оптической проницаемости в области коротких волн. По этой причине для полного гидроксилирования поверхности новые капилляры перед их первым употреблением должны обрабатываться в течение 10 минут 1 М раствором NaOH и затем выдерживаться примерно 20 минут в разделительном буфере.
Наиболее дешевыми являются капилляры, которые предлагаются различными фирмами-производителями на метры. Цена их в настоящее время около 10 марок ФРГ за метр. Существенно дороже капилляры, которые продаются поштучно готовыми к употреблению. Цена здесь колеблется в зависимости от типа капилляра (с покрытием или без, с ячейкой детектора или без и т. д.) и находится в пределах от 100 до 400 марок ФРГ за капилляр.