Литмир - Электронная Библиотека
Содержание  
A
A

Таким образом, физики пришли к заключению, что пульсары и есть те самые нейтронные звезды, существование которых предсказал Ландау.

Подтвердилось и предсказание о сверхтекучести вещества нейтронных звезд. Оказалось, что в некоторых

случаях период пульсара внезапно уменьшается. Это явление было названо «сбоем». Уменьшение периода естественно объяснить звездотрясением. Если при звез-дотрясении звезда внезапно сделается менее сплюснутой, то ее момент инерции уменьшится: тем самым уменьшится и период вращения.

Однако после начала «сбоя», когда звездотрясение уже окончилось, период продолжает уменьшаться еще долгое время: в одном случае несколько суток, в другом - несколько лет. Объяснить столь длительное изменение периода можно, только предположив, что после того, как наружная часть звезды, состоящая из обычного вещества, ускорила свое движение, нейтронная сердцевина продолжает вращаться с прежней скоростью, и лишь через длительное время скорости сравниваются. Но это означает, что нейтронная сердцевина находится в сверхтекучем состоянии! Ведь при обычном трении скорости выравнялись бы за несколько секунд.

Связано ли образование нейтронных звезд со вспышками сверхновых, как это предполагали Бааде и Цвики?

Некоторые пульсары расположены там, где вспыхивали сверхновые -¦ например, пульсар в Крабовидной туманности. Но в большинстве случаев такой связи нет.

Это означает, что иногда нейтронные звезды рождаются без образования сверхновых; и наоборот, некоторые вспышки возникают в результате ядерных реакций, не приводящих к образованию нейтронной звезды с пульсирующим излучением, или, быть может, появляются после взрыва нейтронной звезды. Но об этом речь пойдет дальше.

Теперь мы можем приступить к рассказу о судьбе нейтронной звезды, масса которой растет. Масса звезды может увеличиваться от падения на нее небесных тел и за счет притока вещества от соседних звезд меньшей массы. Рост массы приводит к увеличению плотности в центре звезды.

Как мы увидим, при достаточно большой плотности нейтронная жидкость скачком переходит в новое сверхплотное состояние. При этом выделяется громадная энергия, и звезда взрывается. Причина этого перехода - неустойчивость вакуума в сильных полях, о которой мы говорили в предыдущем разделе. При большой плотности вещества возникает пионный конденсат.

Но как связана пионная конденсация с интересующей нас судьбой нейтронных звезд?

Пионная конденсация в нейтронной жидкости

Когда плотность в центре нейтронной звезды достигает критического значения пс , соответствующего пионной конденсации, должен наступить драматический поворот в судьбе звезды. Сначала в центре звезды возникает зародыш нового сверхплотного состояния нейтронного вещества. Такая конфигурация оказывается неустойчивой - по мере увеличения радиуса зародыша освобождается энергия тяготения. В равновесном состоянии значительная часть звезды должна стать сверхплотной. Поэтому сверхплотный зародыш начинает расти - вещество наружных частей звезды с большой скоростью устремляется к границе зародыша. К тому времени, когда радиус сверхплотной сердцевины достигает величины, соответствующей равновесному состоянию, вещество наружных областей продолжает по инерции двигаться, и радиус сердцевины проскакивает свое равновесное значение. Поскольку равновесие нарушено, начинается обратное движение. Таким образом, радиус сверхплотного зародыша сначала резко возрастает, а затем колеблется около значения, сравнимого с радиусом нейтронной звезды. Процесс образования сверхплотной звезды занимает тысячные доли секунды. При этом переходе выделяется энергия, в несколько раз большая той, которая освобождается при образовании нейтронной звезды. Можно ожидать, что под действием упругих волн, возникающих при колебании радиуса сверхплотной сердцевины, наружная часть звезды выбрасывается в сильно нагретом состоянии, и картина взрыва напоминает вспышку сверхновой.

Таким образом, помимо вспышек, вызванных ядерными реакциями и предшествующих образованию нейтронной звезды, возможны вспышки другой природы, возникающие в результате пионной конденсации и последующего взрыва нейтронной звезды.

К каким последствиям может привести взрыв нейтронной звезды?

Черные дыры

Если заключение о взрыве нейтронной звезды, вызванном пионной конденсацией, будет убедительно доказано теоретически или подтвердится наблюдениями, это будет означать, что нейтронные звезды не могут иметь плотность, превышающую критическое значение пс (как показывает расчет, пс имеет тот же порядок, что и ядерная плотность). Между тем принципиально важно знать, существуют ли звезды с плотностью, значительно превышающей ядерную.

Согласно общей теории относительности при массе звезды, превышающей 2-3 массы Солнца, возникает гравитационная неустойчивость - звезда начинает сжиматься, и, после того как ее радиус сделается меньше некоторого критического значения (гравитационный радиус), никакие силы отталкивания не смогут удержать материю от падения к центру - сжимающее давление сил тяжести превышает расталкивающее давление частиц вещества. Это явление называют коллапсом звезды. Оно заканчивается образованием нового объекта - черной дыры.

Черная дыра проявляет себя практически только как источник гравитационного поля. Тело, попадающее в поле черной дыры, падает к центру дыры и перестает быть видимым. Какую бы энергию ни имела частица, она не может вырваться из черной дыры - ведь с увеличением энергии частицы согласно Эйнштейну увеличивается ее масса, а следовательно, и притяжение к черной дыре. Из черной дыры не только нельзя отправить космический корабль, но даже нельзя подать световой сигнал.

В двойных звездах материя легкой звезды перетекает к более тяжелой. Анализ излучения перетекающего вещества позволяет в нескольких случаях заподозрить, что тяжелый партнер - черная дыра.

Но если бы оказалось, что нейтронные звезды в результате взрыва, вызванного пионной конденсацией, разбрасывают материю уже при ядерных плотностях, то черные дыры не могли бы образоваться.

Другое явление, вызывающее интерес к сверхплотной материи, состоит в том, что при достаточно большой плотности нейтронное вещество может перейти в новое состояние - кварковую материю.

Кварковые звезды

Напомним, что говорилось в «Истории одной симметрии». Все сильно взаимодействующие элементарные частицы - такие частицы называются адронами - состоят из нескольких типов кварков - частиц с дробным электрическим зарядом, равным -1/3 или +2/3 от заряда электрона. Нейтрон и протон (а они - адроны) состоят из трех кварков, а пи-мезон - из кварка и антикварка. Кварки, по-видимому, не существуют как свободные частицы. До сих пор все попытки обнаружить отдельный кварк давали отрицательный результат. Но зато на малых расстояниях между ними их свойства настолько хорошо изучены, что сейчас у большинства физиков нет сомнения в реальности этих частиц. Из анализа опытов по рассеянию адронов друг на друге удалось установить, что при сближении кварков взаимодействие между ними уменьшается.

Это явление было названо асимптотической свободой.

Когда сталкиваются два энергичных адрона, содержащиеся в них кварки не вылетают, а превращаются в другие нуклоны или пи-мезоны.

Для наглядности можно себе представить, что ад-рон - это нечто вроде мешка, в котором кварки движутся свободно, но за пределы которого они не могут удалиться. Если сблизить два нуклона на расстояние, меньшее размера мешка, то получится один общий мешок, в котором будет уже шесть кварков.

При большой плотности нейтронного вещества, когда расстояния между нейтронами сравнимы с радиусом мешка, нейтроны распадаются на свои составные части - нейтронная материя превращается в кварковую. Как показывают расчеты, звезда делается кварковой, когда ее плотность в 10-20 раз превышает ядерную. При этом переходе выделяется энергия и может произойти еще один взрыв звезды.

Осуществляется ли в природе кварковое состояние звезды? Или нейтронная материя уже при ядерной плотности взрывается и разбрасывается? Возможно ли, несмотря на это, образование черных дыр? Уже тот факт, что мы можем ставить такие вопросы, показывает, как далеко мы продвинулись в понимании структуры нейтронных звезд.

51
{"b":"852734","o":1}