Литмир - Электронная Библиотека
Содержание  
A
A

Элементами алгебры высказываний служат простые суждения, вроде «в этой книге больше ста страниц» или «протон состоит из трех кварков». Они обозначаются буквами А, В, С… Два высказывания считаются равными, если истинность одного означает и истинность другого. Например, если А - «сегодня 10 мая», а В - «послезавтра 12 мая», то А = В.

Сумма А + В означает новое высказывание, которое получается соединением А и В союзом «или» в том смысле, что справедливо, по крайней мере, одно из двух высказываний А или В. Если А - «я люблю тебя», а В - «ты любишь меня», то А + В означает либо «я люблю тебя», либо «ты любишь меня», либо «мы любим друг друга». Мы используем для этой операции знак «плюс», следуя книге И. М. Яглома «Булева структура и ее модели» (М., «Советское радио», 1980).

Отсюда следует одно из отличий этой алгебры от школьной: повторение высказывания не означает нового утверждения. Поэтому А+А = А.

Определим произведение АВ как высказывание, которое получается соединением А, В союзом «и». С = АВ в нашем примере означает: «я люблю тебя и ты любишь меня = мы любим друг друга». Тогда А2 = А. Нетрудно получить и более сложное соотношение:

АВ + С = (А + С) (В + С).

Введем отрицание. А - отрицание А. Если А - «электрон массивнее протона», то А - «электрон не

массивнее протона». Тогда А = А и АА = 0. Под знаком О следует понимать заведомо неверное суждение: электрон не может быть одновременно и массивнее и не массивнее протона.

Мы не будем двигаться дальше, уже этого немногого достаточно, чтобы почувствовать идею исчисления высказываний. Тем, кто заинтересовался, будет полезно почитать упомянутую книгу Яглома.

Интересна судьба автора этой удивительной алгебры. Джордж Буль (1815-1864) родился в Англии в бедной семье. Он не учился ни в одном учебном заведении, окончив лишь начальные классы школы для бедных. Самостоятельно изучив латынь и древнегреческий, двенадцатилетний Буль стал печатать в местных изданиях свои переводы Горация. После долгих поисков работы, которая оставляла бы ему время для самообразования, Буль открыл маленькую школу, в которой был единственным преподавателем. К счастью, два влиятельных математика - Д. Грегори, издававший математический журнал, и О. де Морган, профессор Кембриджского университета, оценили оригинальность и глубину мысли первых работ Буля. В 1849 году он сделался профессором математики в колледже города Корк в Ирландии. Здесь он женился на Мэри Эверест, родственнице бывшего председателя геодезического комитета Индии, именем которого была названа самая высокая вершина мира - Эверест (Джомолунгма). Одна из дочерей Буля - Этель Лилиан - вышла замуж за польского революционера Войнича и стала известна у нас как автор романа «Овод». Как переплетаются судьбы и события!

Совсем другого рода красота логических построений в физике. В математике правильность интуитивной догадки проверяется логически; в физике же, изучающей

мир вещей, верховный судья - эксперимент. Необязательно каждый раз обращаться к нему для проверки теории, чаще всего теория опровергается или подтверждается при тщательном анализе сделанных ранее экспериментов или вытекающих из них соотношений. Теоретические построения в физике требуют постоянного согласования с тем, что мы уже знаем об окружающем мире. Физическая теория - не логическое следствие из принятых аксиом, а здание, построенное на правдоподобных предположениях, которые предстоит проверить. Казалось бы, здание строится на шатких основаниях, но слабые звенья постоянно заменяются более крепкими, и здание делается все прочнее.

В главе «Как работают физики» будет много примеров того, как неуклонно приводит к цели метод проб и ошибок. Вы увидите, как мало было оснований для гениальной догадки де Бройля о волновых свойствах частиц: раз свет - и волна и частица, почему бы электрону тоже не быть сразу и частицей и волной! Или другой пример: уравнение Шрёдингера, блестяще объяснившее свойства атома еще до того, как смутные и тончайшие соображения привели к пониманию физического смысла волновой функции.

Есть особая прелесть в этих поисках в потемках, где проводник - шестое чувство!

Математик не может без негодования смотреть, «как физик суммирует бесконечные ряды, предполагая при этом, что два-три члена ряда дают хорошее приближение ко всему ряду, и вообще живет в царстве свободы, нарушая все «моральные нормы». Но вместе с тем эффективность «колдовства» физиков… оставляет математика в состоянии немого изумления». Я цитирую книгу Ю. И. Манина «Математика и физика» (М., «Знание», 1979). Очень жаль, что глубокие и остроумные замечания этой книги адресованы в основном математикам.

Результативность интуитивных методов физики объясняют слова, написанные на камине в доме Эйнштейна: «Господь Бог изощрен, но не злонамерен». Экзотические ситуации, которые математик обязан предусмотреть, создавая строгое доказательство, редко встречаются в реальном мире - бесконечности и разрывы есть результат упрощенной или неудачной формулировки. Можно ожидать, что те же величины в более совершенной теории окажутся конечными и непрерывными при вещественных значениях переменных. И тогда возмущенный математик получит строгим путем часть уже известных физикам соотношений.

Красота теории имеет в физике почти определяющее значение, делает недостоверные рассуждения достаточно убедительными, чтобы поставить эксперимент для проверки предположений. В следующей главе у нас еще будет повод сравнить поиски истины в физике и в математике. Несмотря на различие методов и объекта познания, физика не может обойтись без математического языка и математического аппарата.

Разумеется, не все естественные науки нуждаются в математике в такой мере, как физика. В биологии основное - это процессы жизни, не сводящиеся к числовым характеристикам. Легко может быть математизирована только та сторона биологических явлений, которая определяется физико-химическими процессами. Впрочем, возможно, уже в скором времени возникнут новые математические структуры, которые позволят формализовать более глубокие стороны биологии и даже искусства.

Скрытая красота

Не странно ли, что математика, исследующая мир логических отношений, позволяет проникать в тайны мира вещей? Красота физики открывается во всей полноте только с помощью математики.

Теория относительности возникла из глубочайшего пересмотра понятий времени и пространства. Математики почти не потребовалось. Но завершенную красоту теория приобретает, если воспринимать ее как следствие симметрии природы относительно поворотов в четырехмерном пространстве, где четвертая координата - время. Уравнения теории тяготения, несмотря на глубину и ясность идей, лежащих в ее основе, нельзя даже представить себе без методов описания величин в пространстве с геометрическими свойствами, которые изменяются от точки к точке.'

Дмитрий Иванович Менделеев обнаружил удивительную симметрию химических свойств, но подлинную красоту таблица Менделеева обрела после создания квантовой механики, когда полностью раскрылась природа этой симметрии.

Почему симметрия, объясняющая независимость энергии атома водорода от момента количества движения, видна, как показал В. А. Фок, только во вспомогатель

Поиски истины - pic_37.png

ном четырехмерном пространстве после сложных преобразований?

Почему квантовая электродинамика становится особенно красивой и простой, если описывать позитрон как электрон, движущийся вспять во времени, хотя в действительности любой физический объект движется во времени только вперед? Это дало право замечательному американскому физику Джону Уилеру высказать дикую, но красивую и ошеломляющую идею, что все электроны и позитроны мира - это проекция на плоскость времени - мгновенный разрез - клубка движений вперед и назад одного-единственного электрона. Фейнман рассказал в нобелевской речи, как ему позвонил Уилер: «Фейнман, я знаю, почему у всех электронов одинаковый заряд и масса!» - «Почему же?» - «Потому что все это один и тот же электрон!»

24
{"b":"852734","o":1}