Литмир - Электронная Библиотека
A
A

TP: модель правильно определила спам-письмо как спам (80 писем).

FP: модель неправильно определила не спам-письмо как спам (20 писем).

FN: модель неправильно определила спам-письмо как не спам (20 писем).

Рассчитайте полноту как отношение TP к общему числу положительных примеров (TP + FN):

Recall = TP / (TP + FN) = 80 / (80 + 20) = 0.8 = 80%

Таким образом, в данном примере модель правильно определила 80 из 100 спам-писем, что соответствует полноте в 80%.

Пример № 2: Представьте, что вы работаете аналитиком в интернет-магазине, который хочет улучшить свой алгоритм рекомендаций товаров пользователям. Вы хотите проверить, насколько хорошо работает текущий алгоритм и решаете посчитать метрику полноты для одной из категорий товаров – "электроника".

Для этого вы берете случайную выборку из 200 пользователей, которые просмотрели товары в категории "электроника" на вашем сайте за последний месяц. После того, как вы применили алгоритм рекомендаций, вы получили следующие результаты:

Из 200 пользователей 120 купили хотя бы один рекомендованный товар в категории "электроника" (TP).

Из 200 пользователей 80 не купили ни одного рекомендованного товара в категории "электроника" (FN).

Рассчитайте метрику полноты (recall) для категории "электроника".

Решение:

TP = 120 (пользователи, которые купили хотя бы один рекомендованный товар в категории "электроника") FN = 80 (пользователи, которые не купили ни одного рекомендованного товара в категории "электроника")

Recall = TP / (TP + FN) = 120 / (120 + 80) = 0.6 = 60%

Метрика полноты для категории "электроника" составляет 60%. Это означает, что ваш текущий алгоритм рекомендаций смог правильно найти 60% всех пользователей, которые купили товары в этой категории за последний месяц. Вам следует анализировать результаты и работать над улучшением алгоритма, чтобы повысить метрику полноты и увеличить долю пользователей, которым будут рекомендованы интересные товары в категории "электроника".

Метрика F1-score (F-мера)

Метрика F1-score (F-мера) – это совместная метрика для оценки качества алгоритма классификации, которая учитывает обе метрики Precision (Точность) и Recall (Полнота). F1-score является гармоническим средним между Precision и Recall, что делает эту метрику более сбалансированной, чем каждая из них по отдельности. F1-score особенно полезна в случаях, когда классы в данных несбалансированы или когда ошибки первого и второго рода имеют схожую важность.

Метрика F1-score рассчитывается следующим образом:

F1-score = 2 * (Precision * Recall) / (Precision + Recall)

где:

Precision = TP / (TP + FP) – точность;

Recall = TP / (TP + FN) – полнота;

TP (True Positives) – количество правильно классифицированных положительных объектов;

FP (False Positives) – количество неправильно классифицированных положительных объектов (ложные срабатывания);

FN (False Negatives) – количество неправильно классифицированных положительных объектов (пропущенные срабатывания).

F1-score принимает значения в диапазоне от 0 до 1 (или от 0% до 100%). Чем ближе значение F1-score к 1 (или 100%), тем лучше модель справляется с задачей классификации, учитывая обе метрики Precision и Recall. Если F1-score равен 0, это означает, что модель полностью не справляется с задачей классификации.

Пример № 1: В задаче определения, является ли человек носителем определенной генетической мутации, модель должна быть высоко точной и полной. Если точность модели равна 90%, а полнота – 80%, то F1-score будет равен 84%.

давайте распишем пошаговое решение для метрики F1-score (F-мера) на примере 1:

Рассчитайте точность и полноту модели, используя соответствующие формулы:

Precision = TP / (TP + FP) Recall = TP / (TP + FN)

В данном примере, точность = 0.9 (или 90%) и полнота = 0.8 (или 80%).

Рассчитайте F1-score как гармоническое среднее точности и полноты:

F1-score = 2 * (Precision * Recall) / (Precision + Recall)

F1-score = 2 * (0.9 * 0.8) / (0.9 + 0.8) = 0.84 (или 84%)

Таким образом, в данном примере F1-score равен 84%.

Мы получили F1-score равный 84%, что указывает на то, что модель демонстрирует неплохую производительность с учетом обеих метрик (точность и полнота). Это позволяет оценить модель с более сбалансированной точки зрения по сравнению с использованием только одной из метрик.

Пример № 2: В задаче определения, является ли новость фейковой или нет, модель должна быть высоко точной и полной. Если точность модели равна 85%, а полнота – 90%, то F1-score будет равен 87.5%.

давайте рассмотрим пошаговое решение для метрики F1-score (F-мера) на примере 2:

Рассчитайте точность и полноту модели, используя соответствующие формулы:

Precision = TP / (TP + FP) Recall = TP / (TP + FN)

В данном примере, точность = 0.85 (или 85%) и полнота = 0.9 (или 90%).

Рассчитайте F1-score как гармоническое среднее точности и полноты:

F1-score = 2 * (Precision * Recall) / (Precision + Recall)

F1-score = 2 * (0.85 * 0.9) / (0.85 + 0.9) = 0.875 (или 87.5%)

Таким образом, в данном примере F1-score равен 87.5%.

Метрика ROC AUC

Метрика ROC AUC (Receiver Operating Characteristic – Area Under the Curve) – это метрика качества алгоритма классификации, основанная на анализе ROC-кривой. ROC-кривая представляет собой графическое представление взаимосвязи между чувствительностью (True Positive Rate, TPR) и специфичностью (False Positive Rate, FPR) классификатора при различных пороговых значениях.

True Positive Rate (TPR) или Recall (Полнота) определяется как TP / (TP + FN);

False Positive Rate (FPR) определяется как FP / (FP + TN).

ROC AUC является численным значением, равным площади под ROC-кривой. Оно принимает значения в диапазоне от 0 до 1 (или от 0% до 100%). Чем ближе значение ROC AUC к 1 (или 100%), тем лучше модель справляется с задачей классификации. Значение ROC AUC, равное 0.5, означает, что модель работает на уровне случайного предсказания, а значение, меньше 0.5, указывает на то, что модель предсказывает хуже случайного предсказания.

Преимущества использования метрики ROC AUC заключаются в том, что она не зависит от порога классификации, устойчива к несбалансированным классам и может быть использована для сравнения различных моделей классификации.

Однако стоит отметить, что ROC AUC может давать оптимистичные оценки при наличии сильно несбалансированных классов. В таких случаях рекомендуется использовать другие метрики, такие как Precision-Recall AUC, которые учитывают ошибки первого и второго рода.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

4
{"b":"849779","o":1}