Литмир - Электронная Библиотека

При таком подходе плотность r может показаться идеализацией, искусственной конструкцией, а траектория точки в фазовом пространстве «непосредственно» соответствующей описанию «естественного» поведения системы. Но в действительности идеализацией является точка, а не плотность. Дело в том, что начальное состояние никогда не бывает известно с бесконечной степенью точности, позволяющей стянуть область в фазовом пространстве в отдельную точку. Мы можем лишь определить ансамбль траекторий, выходящих из ансамбля представляющих точек, соответствующих тому, что нам известно относительно начального состояния системы. Функция плотности r отражает уровень наших знаний о системе: чем точнее знания, тем меньше область в фазовом пространстве, на которой плотность отлична от нуля, т. е. та область, где может находиться система. Если бы плотность была равномерно распределена по всему фазовому пространству, то утверждать что-либо относительно состояния системы было бы невозможно. Она могла бы находиться в любом из состояний, совместимых с ее динамической структурой.

При таком подходе точка соответствует максимуму знания, которым мы можем располагать о системе. Такой максимум есть результат предельного перехода, все возрастающей точности нашего знания. Как мы увидим в гл. 9, фундаментальная проблема состоит в том, чтобы выяснить, какой предельный переход реально осуществим. Непрестанное повышение точности означает, что от одной области в фазовом пространстве, где плотность r отлична от нуля, мы переходим к другой, меньшей, которая содержится в первой. Такое стягивание мы можем продолжать до тех пор, пока область, содержащая систему, не станет сколь угодно малой. Но при этом, как мы увидим в дальнейшем, необходимо соблюдать осторожность: «сколь угодно малая» не означает «нулевая», и априори ниоткуда не следует, что наш предельный переход непременно приведет к непротиворечивому предсказанию отдельной однозначно определенной траектории.

Теория ансамблей Гиббса—Эйнштейна — естественное продолжение теории Больцмана. Функцию плотности r в фазовом пространстве можно рассматривать как аналог функции распределения скоростей f, которую использовал Больцман. Но по своему физическому содержанию PPP «богаче», чем f. Функция плотности r так же, как и f, определяет распределение скоростей, но, помимо этого, r содержит и другую информацию, в частности вероятность найти две частицы на определенном расстоянии друг от друга. В функцию плотности PPP входит и все необходимое для определения корреляций между частицами, о которых шла речь в предыдущем разделе. Более того, r содержит полную информацию о всех статистических свойствах системы п тел.

Опишем теперь эволюцию функции плотности в фазовом пространстве. На первый взгляд это еще более дерзкая задача, чем та, которую поставил перед собой Больцман: описание временной эволюции функции распределения скоростей. Но это не так. Канонические уравнения Гамильтона, о которых шла речь в гл. 2, позволяют нам получить точное эволюционное уравнение для r без дальнейших приближений. Это так называемое уравнение Лиувилля, к которому мы еще вернемся в гл. 9. Пока же отметим лишь одно важное следствие из гамильтоновой динамики: плотность r эволюционирует в фазовом пространстве как несжимаемая жидкость (если представляющие точки в какой-то момент времени занимают в фазовом пространстве область объемом V, то объем области остается постоянным во времени). Форма области может изменяться произвольно, но объем ее при всех деформациях сохраняется.

Таким образом, теория ансамблей Гиббса открывает возможность строгого сочетания статистического подхода (исследования «популяции», описываемой плотностью r) и законов динамики. Она допускает также более точное представление состояния термодинамического равновесия. Например, в случае изолированной системы ансамбль представляющих точек соответствует системам с одной и той же энергией Е. Плотность r отлична от нуля только на микроканонической поверхности в фазовом пространстве, отвечающей заданному значению энергии. Первоначально плотность r может быть распределена по микроканонической поверхности произвольно. В состоянии равновесия плотность r перестает изменяться во времени и не должна зависеть от выбора начального состояния. Следовательно, приближение к равновесному состоянию имеет простой смысл в терминах эволюции плотности r: функция распределения r становится постоянной на всей микроканонической поверхности. Каждая точка такой поверхности с равной вероятностью может представлять систему. Это соответствует микроканоническому ансамблю.

Порядок из хаоса - img_44

Рис. 28. Временная эволюция в фазовом пространстве «объема», содержащего представляющие точки системы: величина объема остается неизменной, а форма искажается. Положение в фазовом пространстве задается координатой q и импульсом р.

Приближает ли теория ансамблей хоть сколько-нибудь к решению проблемы необратимости? Теория Больцмана описывает термодинамическую энтропию с помощью функции распределения скоростей f. Для этого Больцману пришлось ввести свою H-функцию. Как мы уже знаем, система эволюционирует во времени до тех пор, пока распределение скоростей не становится максвелловским, и на протяжении всей эволюции H функция монотонно убывает. Можно ли теперь в более общем плане принять за основу возрастания энтропии эволюцию распределения r в фазовом пространстве к микроканоническому ансамблю? Достаточно ли для этого вместо больцмановской функции H, выраженной через f, взять гиббсовскую функцию HG, зависящую точно таким же образом от r? К сожалению, ответы на оба вопроса отрицательны. Если мы рассмотрим уравнение Лиувилля, описывающее эволюцию плотности r в фазовом пространстве, и учтем сохранение объема «фазовой жидкости», о котором уже упоминалось, то вывод последует незамедлительно: функция HG постоянна и поэтому не может быть аналогом энтропии. По отношению к теории Больцмана последнее обстоятельство кажется не столько продвижением вперед, сколько шагом назад!

Несмотря на этот негативный аспект, вывод Гиббса остается весьма важным. Мы уже неоднократно отмечали расплывчатость и. неоднозначность понятий порядка и хаоса. Постоянство функции HG свидетельствует о том, что в рамках динамической теории не существует никакого изменения порядка! «Информация», выражаемая функцией HG, остается постоянной. Сохранение информации можно понимать следующим образом: столкновения порождают корреляции. В результате столкновений скорости рандомизируются, становятся случайными, что позволяет нам описывать весь процесс как переход от порядка к хаосу. Вместе с тем появление корреляции в результате столкновений свидетельствует об обратном процессе: о переходе от хаоса к порядку! Теория Гиббса показывает, что оба процесса — прямой и обратный — в точности компенсируют друг друга.

Итак, мы приходим к важному выводу: независимо от выбора представления (будь то движение по траекториям или теория ансамблей Гиббса—Эйнштейна) нам не удастся построить теорию необратимых процессов, которая выполнялась бы для любой системы, удовлетворяющей законам классической (или квантовой) механики. У нас нет даже способа говорить о переходе от порядка к хаосу! Как следует понимать эти отрицательные результаты? Любая ли теория необратимых процессов находится в неразрешимом конфликте с механикой (классической или квантовой)? Нередко высказывалось предложение включить космологические члены, которые учитывали бы влияние расширяющейся Вселенной на уравнения движения и порождали бы стрелу времени. С подобной идеей трудно согласиться. С одной стороны, не вполне ясно, как вводить эти космологические члены. С другой стороны, точные динамические эксперименты, по-видимому, отвергают существование космологических членов, по крайней мере если говорить о земных масштабах, которые мы и рассматриваем в данном случае (достаточно вспомнить о прецизионных космических экспериментах, поставленных с помощью искусственных спутников Земли и подтвердивших с высокой точностью уравнения Ньютона). Вместе с тем, как уже неоднократно подчеркивалось, мы живем в плюралистическом мире, в котором обратимые и необратимые процессы сосуществуют в одной и той же расширяющейся Вселенной.

73
{"b":"838434","o":1}