Литмир - Электронная Библиотека

Порядок из хаоса - img_33

А

Рис. 22. Возможная история «урбанизации». Черный кружок — населенные пункты только с одной функцией 1; крупный черный кружок — населенные пункты с функциями 1 и 2; крупный: черный кружок в треугольнике — населенные пункты с функциями 1, 2 и 3; крупный черный кружок в треугольнике и квадрате — крупнейшие населенные пункты с функциями 1, 2, 3 и 4. При t=0 (не показано на рисунках) численность населения всех пунктов одинакова и составляет 67 единиц.

Порядок из хаоса - img_34

В

Порядок из хаоса - img_35

С

На рис. С численность населения крупнейшего центра достигает максимума (152 единицы), после чего начинается «расползание» города с образованием городов-спутников.

Порядок из хаоса - img_36

D

Аналогичный процесс наблюдается и в окрестностях главного центра.

Порядок из хаоса - img_37

E

За исходное состояние в рассматриваемой модели приняты гипотетические начальные условия, при которых в различных точках наблюдается (сельскохозяйственная) активность «уровня 1». Модель позволяет проследить возникновение иерархически упорядоченной активности, соответствующей более высоким уровням иерархии по Кристаллеру, т. е. подразумевающей экспорт произведенной продукции в более широкую область. Модель показывает, что даже если начальное состояние совершенно однородно, то одной лишь игры случайных (т. е. не контролируемых моделью) факторов, таких, как место и время закладки различных предприятий, достаточно для нарушения симметрии — появления зон с высокой концентрацией активности и одновременным спадом экономической активности в других областях и оттоком из них населения. Проигрывание модели на ЭВМ позволяет наблюдать расцвет и упадок, подчинение одного экономического центра другому и соответственно доминирование одних центров над другими, периоды, благоприятные для развития альтернативных направлений, и сменяющие их периоды «замораживания» уже существующих структур.

В то время как симметричное распределение Кристаллера игнорирует «историю», изложенный выше сценарий учитывает ее (по крайней мере самым минимальным образом) как взаимодействие «законов», имеющих в данном случае чисто экономическую природу, и «случая», управляющего последовательностью, в которой возникают предприятия.

7. Моделирование сложности

Несмотря на свою простоту, наша модель довольно точно передает некоторые особенности эволюции сложных систем. В частности, она проливает свет на природу трудностей «управления» развитием, зависящим от большого числа взаимодействующих элементов, Каждое отдельное действие или локальное вмешательство в систему обретает коллективный аспект, который может повлечь за собой совершенно неожиданные глобальные изменения. Как подчеркивал Уоддингтон, в настоящее время мы еще мало знаем о наиболее вероятной реакции системы на то или иное изменение. Очень часто отклик системы на возмущение оказывается противоположным тому, что подсказывает нам наша интуиция. Наше состояние обманутых ожиданий в этой ситуации хорошо отражает введенный в Массачусетском технологическом институте термин «контринтуитивный»: «Эта проклятая штука ведет себя не так, как должна была бы вести!» В подтверждение сошлемся на классический пример, приведенный Уоддингтоном: программа ликвидации трущоб вместо того, чтобы улучшить, еще более ухудшает ситуацию. Новые здания, построенные на месте снесенных, привлекают в район большее число людей, но если их занятость не обеспечивается, то они продолжают оставаться бедными, а их жилища становятся еще более перенаселенными[177]. Мы приучены мыслить в терминах линейной причинности, но теперь нуждаемся в новых «средствах мышления». Одно из величайших преимуществ рассмотренной модели состоит как раз в том, что она позволяет нам находить такие средства и разрабатывать способы их оптимального использования.

Как мы уже отмечали, логистические уравнения наиболее пригодны, когда критическим измерением является рост популяции, будь то популяция животных, совокупность их навыков или активностей. Логистическая модель исходит из предположения о том, что каждый член популяции может быть выбран и рассматриваться как эквивалент любого другого члена. Но эту общую эквивалентность надлежит рассматривать не как незыблемый факт, а лишь как приближение, достоверность которого зависит от связей, наложенных на популяцию, от оказываемого на нее давления и от стратегии, избираемой популяцией для того, чтобы противодействовать вмешательству извне.

Взять хотя бы различие, проводимое экологами между К-стратегиями и r-стратегиями и r — параметры, входящие в логистическое уравнение). Хотя это различие относительно, оно проявляется особенно отчетливо в дивергенции, обусловленной систематическим взаимодействием между двумя популяциями, в частности взаимодействием хищник — жертва. Типичной для популяции жертв эволюцией является увеличение рождаемости r, а для популяции хищников — совершенствование способов ловли жертв, т. е. увеличение коэффициента К. Но повышение К в рамках логистической модели влечет за собой последствия, выходящие за круг явлений, описываемых логистическими уравнениями.

Как заметил Стивен Дж. Гулд[178]. К-стратегия подразумевает, что индивид все более повышает свою способность обучаться на опыте и хранить накопленную информацию в памяти. Иначе говоря, индивиды становятся все более сложными и со все более долгим периодом созревания и обучения. В свою очередь это означает, что индивиды становятся все более «ценными», представляющими более крупные вложения «биологического капитала» и уязвимыми на протяжении более продолжительного периода. Развитие «социальных» и «семейных» связей является, таким образом, логическим аналогом К-стратегии. С этой точки зрения другие факторы, помимо численности индивидов в популяции, становятся все более существенными, и логистическое уравнение, измеряющее успех по числу индивидов, все хуже отражает истинное положение дел. Перед нами достаточно наглядный пример, показывающий, почему к моделированию сложных явлений следует относиться с осторожностью: в сложных системах дефиниция самих сущностей и взаимодействия между ними в процессе эволюции могут претерпевать изменения. Не только каждое состояние системы, но и само определение си-темы в том виде, в каком ее описывает модель, обычно нестабильно или по крайней мере метастабильно.

Мы подходим к проблемам, в которых методология неотделима от вопроса о природе исследуемого объекта. Мы не можем задавать одни и те же вопросы относительно популяции мушек, рождающихся и погибающих миллионами без сколько-нибудь заметных признаков обучения на опыте или расширения опыта, и относительно популяции приматов, каждый член которой является как бы тончайшим переплетением собственного опыта и традиций популяции.

Нетрудно видеть, что и в самой антропологии необходим принципиальный выбор между различными подходами к коллективным явлением. Хорошо известно, например, что структурная антропология отдает предпочтение тем аспектам общества, к которым применимы средства и методы логики и конечной математики, а именно: к элементарным структурам родства или анализу мифов, трансформации которых нередко сравнимы с ростом кристаллов. Дискретные элементы подсчитываются и комбинируются. Такой комбинаторный подход в корне отличается от подходов, анализирующих эволюцию в терминах процессов, которые охватывают большие, частично хаотические популяции. Мы имеем здесь дело с двумя различными взглядами и двумя типами моделей: Леви-Строс называет их соответственно механической и статистической моделями. В механической модели «элементы того же масштаба, что и явления», а индивидуальное поведение основано на предписаниях, относящихся к структурной организации общества. Антрополог выявляет логику этого поведения, а социолог со своей стороны работает со статистическими моделями больших популяций и определяет средние и пороги[179].

61
{"b":"838434","o":1}