Литмир - Электронная Библиотека

Порядок из хаоса - img_18

Рис. 14. «Вынужденная» бифуркация, индуцированная внешним полем. На диаграмме концентрация Х представлена как функция параметра l. В отсутствие внешнего поля произошла бы симметричная бифуркации, показанная пунктирной линией. Критическое значение параметра бифуркации обозначено lс. Устойчивая ветвь b) находится на конечном расстоянии от ветви a).

Рассмотрим снова систему с бифуркационной диаграммой, изображенной на рис. 11. Предположим, что в отсутствие гравитации, т. е. при g=0, мы имеем, как на рис. 12 и 13, асимметричную конфигурацию «снизу вверх» и ее зеркальное отражение — конфигурацию «сверху вниз». Оба распределения равновероятны, но если включить g, то бифуркационные уравнения изменятся, так как поток диффузии будет содержать член, пропорциональный g. В результате мы получим диаграмму, изображенную на рис. 14. Исходная бифуркационная диаграмма исчезнет, сколь бы малым ни было включенное гравитационное поле. Одна структура а) на новой диаграмме возникает при увеличении параметра бифуркации непрерывно, другая b) достижима лишь при конечном возмущении. Следуя по ветви а), мы ожидаем, что и система будет изменяться непрерывно. Наши ожидания оправдаются при условии, если расстояние S между двумя ветвями велико по сравнению с амплитудой тепловых флуктуации концентрации X. Происходит то, что мы называем «вынужденной» бифуркацией. Как и прежде, вблизи критического значения lс управляющего параметра может произойти самоорганизация. Но теперь одна из двух возможных структур предпочтительнее другой и подлежит отбору.

Важно отметить, что в зависимости от химического процесса, ответственного за бифуркацию, описанный выше механизм может обладать необычайной чувствительностью. Как уже упоминалось, вещество обретает способность воспринимать» различия, неощутимые в равновесных условиях. Столь высокая чувствительность наводит на мысль о простейших организмах, например о бактериях, способных, как известно, реагировать на электрические или магнитные поля. В более общем плане это означает, что в сильно неравновесной химии возможна «адаптация» химических процессов к внешним условиям. Этим сильно неравновесная область разительно отличается от равновесной, где для перехода от одной структуры к другой требуются сильные возмущения или изменения граничных условий.

Еще одним примером спонтанной «адаптивной организации» системы, ее «подстройки» к окружающей среде может служить чувствительность сильно неравновесных состояний к внешним флуктуациям. Приведем один пример[155] самоорганизации как функции флуктуирующих внешних условий. Простейшей из всех мыслимых химических реакций является реакция изомеризации ADB. В нашей модели вещество А может участвовать и в другой реакции: А+свет→A*→A+тепло (молекула А, поглощая свет, переходит в возбужденное состояние A*, из которого возвращается в основное состояние, испуская при этом тепло). Мы предполагаем, что обе реакции происходят в замкнутой системе, способной обмениваться с внешним миром только светом и теплом. В системе имеется нелинейность, так как превращение молекулы В в молекулу А сопровождается поглощением тепла: чем выше температура, тем быстрее образуется А. Кроме того, чем выше концентрация А, чем сильнее А поглощает свет и преобразует его в тепло, тем выше температура вещества А. Таким образом, А катализирует образование самого себя.

Можно ожидать, что концентрация А, соответствующая стационарному состоянию, возрастет с увеличением интенсивности света, и действительно так и происходит. Но, начиная с некоторой критической точки, мы сталкиваемся с одним из типичных сильно неравновесных явлений: сосуществованием множественных стационарных состояний. При одних и тех же условиях (например, интенсивности света и температуре) система может находиться в двух различных устойчивых стационарных состояниях, отвечающих двум различным концентрациям А. Третье (неустойчивое) стационарное состояние соответствует порогу между двумя устойчивыми стационарными состояниями. Сосуществование стационарных состояний порождает такое хорошо известное явление, как гистерезис. Но это еще не все. Если интенсивность света вместо того, чтобы быть постоянной, начнет случайным образом флуктуировать, то наблюдаемая нами картина резко изменится. Зона сосуществования двух стационарных состояний расширится, и при некоторых значениях параметров станет возможным сосуществование трех стационарных устойчивых состояний.

В таких положениях случайная флуктуация во внешнем потоке, часто называемая шумом, — отнюдь не досадная помеха: она порождает качественно новые типы режимов, для осуществления которых при детерминистических потоках потребовались бы несравненно более сложные схемы реакций. Важно помнить и о том, что случайный шум неизбежно присутствует в потоках в любой «естественной системе». Например, в биологических или экологических системах параметры, определяющие взаимодействие с окружающей средой, как правило, недопустимо считать постоянными. И клетка, и экологическая ниша черпают все необходимое для себя из окружающей их среды; влага, рН, концентрация солей, свет и концентрация питательных веществ образуют непрестанно флуктуирующую среду. Чувствительность неравновесных состояний не только к флуктуациям, обусловленным их внутренней активностью, но и к флуктуациям, поступающим из окружающей среды, открывает перед биологическими исследованиями новые перспективы.

Порядок из хаоса - img_19

Рис. 15. Явление «гистерезиса», возникающее, если значение параметра бифуркации b сначала возрастает, а затем убывает. Если система первоначально находится в стационарном состоянии, принадлежащем нижней ветви, то при возрастании b она продолжает оставаться на нижней ветви. При b=b2 происходит перескок: система скачком переходит из состояния Q в состояние Q', принадлежащее верхней ветви. И наоборот, если система первоначально находится в состоянии, принадлежащем верхней ветви, то при уменьшении b она продолжает оставаться на верхней ветви до b=b1, после чего скачком переходит из состояния Р в состояние Р'. Бистабильные режимы такого типа встречаются во многих областях науки и техники, например в лазерах, химических реакциях и биологических мембранах.

7. Каскады бифуркаций и переходы к хаосу

В предыдущем разделе мы занимались рассмотрением только первой, или, как предпочитают говорить математики, первичной, бифуркации, которая возникает, когда мы вынуждаем систему перейти порог устойчивости. Далеко не исчерпывая новые решения, которые при этом могут появиться, первичная бифуркация приводит к появлению лишь одного характерного времени (периода предельного цикла) или одной характерной длины. Для того чтобы получить всю картину пространственно-временной активности, наблюдаемой в химических или биологических системах, необходимо продвинуться по бифуркационной диаграмме дальше.

Мы уже упоминали о явлениях, возникающих в результате сложного взаимодействия огромного числа частот в гидродинамических или химических системах. Рассмотрим хотя бы ячейки Бенара, возникающие на определенном расстоянии от равновесия. При дальнейшем удалении от теплового равновесия конвективный поток начинает колебаться во времени. Чем дальше мы уходим от равновесия, тем больше частот появляется в колебаниях, пока наконец не произойдет переход в турбулентный режим[156]. Взаимодействие колебаний с различными частотами создает предпосылки для возникновения больших флуктуаций. Область на бифуркационной диаграмме, определяемая значениями параметров, при которых возможны сильные флуктуации, обычно принято называть хаотической. Иногда порядок, или когерентность, чередуется с тепловым хаосом и неравновесным турбулентным хаосом. Так происходит, например, в случае неустойчивости Бенара: если увеличивать градиент температуры, то конфигурация конвективных потоков усложнится, появятся колебания, а при дальнейшем увеличение градиента упорядоченная структура исчезнет, уступив место хаосу. Не следует смешивать, однако, равновесный тепловой хаос с неравновесным турбулентным хаосом. В тепловом хаосе, возникающем в равновесных условиях, все характерные пространственные и временные масштабы микроскопического порядка. В турбулентном хаосе число макроскопических пространственных и временных масштабов столь велико, что поведение системы кажется хаотическим. В химии порядок и хаос связаны между собой сложными отношениями: упорядоченные (колебательные) режимы чередуются с хаотическими. Такая перемежаемость, например, наблюдалась в реакции Белоусова—Жаботинского как функция скорости потока.

53
{"b":"838434","o":1}