Прежде чем приступить к анализу найденной закономерности, необходимо сделать некоторые замечания о степени ее значимости и границах ее применимости.
В качестве исходной точки для последующих преобразований был взят второй закон Ньютона в каноническом виде. Поскольку этот закон выражает наиболее фундаментальные свойства материального мира, заключающиеся, во-первых, в существовании массы как меры инертности тела и, во-вторых, в способности этого тела изменять свою скорость под действием приложенной силы, то полученное выражение для величины интервала физического времени также является фундаментальным законом, связывающим меру противодействия со стороны материального тела изменению его энергии с количеством внешней энергии, вложенной в процесс движения, а следствия, из него вытекающие, имеют столь же фундаментальное значение.
Кроме того, выражение для временного интервала было получено из второго закона без каких-либо специальных ограничений или искусственных приемов, выходящих за рамки классической механики. Поэтому полученное выражение может быть применено в той же мере и тех же случаях, что и упомянутый выше закон. То есть выражение для временного интервала, полученное подобным образом, без каких-либо ограничений применимо в границах применимости классической механики.
И отсюда следует главный вывод: если считать, что второй закон Ньютона адекватно описывает реальные движения, то полученное выражение описывает их столь же адекватно.
При этом учитывается, как уже ранее отмечалось, некоторая ограниченность описания, присущая абстрактному изображению реального движения.
Отмечая это, приходим к окончательному выводу, что выражение вида
где T – временной интервал;
Ĵ – обобщенный момент инерции;
E – вкладываемая в процесс или извлек аемая из процесса сторонняя энергия имеет для классической механики всеобщий характер и исчерпывающим образом характеризует физическое время, фигурирующее в ее задачах.
Перейдем теперь к анализу свойств выведенной закономерности.
Заметим прежде всего, что величина временного интервала, выраженная таким образом, может быть вычислена для реального, наблюдаемого в действительности движения действительно существующего материального тела. Несмотря на то что мы вначале исходили из представления об абсолютном времени, которое постулируется для применения в законах Ньютона, полученное из анализа этих законов время (поскольку, как мы считаем, они адекватно описывают реальность) уже имеет иные характеристики. То, что свойства времени, выражение для которого было получено подобным образом, отличаются от свойств Ньютонова абсолютного времени, мы покажем, когда подробно проанализируем эти свойства, но даже без подробного анализа видно, что эти свойства скорее соответствуют тому относительному времени, которое Ньютон считал «кажущимся» и неспособным при его применении в научном исследовании адекватно описывать явления окружающего нас мира.
Отсюда следует, что Ньютон, давая характеристику абсолютному и относительному времени, описал ситуацию, противоречащую реальному положению дел. На самом деле всеобщим определением времени является то, что он объявляет относительным, а его абсолютное характеризует лишь некий ограниченный набор частных случаев, то есть представляет собой определение особенного.
Поэтому, чтобы отличать наше представление от представления Ньютона, мы будем далее везде называть отрезки времени в нашем представлении временным интервалом (с ударением на третьем слоге первого слова). И, говоря о временном интервале, нужно учитывать, что на самом деле мы обсуждаем свойства того реального физического времени, о котором шла речь в начале исследования.
Первое, что бросается в глаза при рассмотрении выражения для временного интервала, – это полное и окончательное устранение из проблемы физического времени любых, даже самых слабых, намеков на существование у времени каких-либо мистических свойств.
Время в классической механике является параметром, принципиально не выделяющимся среди других общепринятых параметров, таких как, например, сила, масса, скорость, ускорение и т. д., и это обстоятельство позволяет раз и навсегда отмежеваться от многочисленных попыток спекулятивного использования его свойств в разного рода эзотерических конструкциях.
Вторым выводом, непосредственно следующим из самого вида закономерности, является утверждение о том, что время не является самостоятельной материальной сущностью. В отличие от абсолютного времени Ньютона квазиматериальность не является необходимым свойством временного интервала ни теоретически, ни при практическом его использовании в реальных динамических задачах. Квадрат значения временного интервала в построениях классической механики есть счетная величина, как и считал в свое время Аристотель. Она в итоге есть отношение сопротивления протеканию процесса к половине энергии, вкладываемой в процесс или извлекаемой из него. Поэтому время по своей сути есть отношение. Однако, будучи отношением, оно тем не менее не имеет материального воплощения, как, например, масса. У времени в нашей интерпретации нет такой двойственности: время, используемое в физических зависимостях, есть число, и у него нет присущих Ньютоновому времени противоречивых свойств.
Физически время есть измеренная продолжительность единичного процесса и вне процесса не существует.
Являясь абстрактной характеристикой реального материального взаимодействия, его параметром, свойством, присущим движению материи, т. е. свойством свойства или свойством в квадрате, само время поэтому особым видом материи, как, например, электромагнитное поле, не является, и непосредственно с ним невозможно производить материальные преобразования. Подобные действия можно предпринять лишь по отношению к самому движению, воздействуя на условия его осуществления. И лишь в результате этого параметры движения, в том числе и время, изменятся в свою очередь. Поэтому время само по себе, независимо от движения, к которому оно относится, нельзя как нечто самостоятельно существующее «отразить», «сжать», «повернуть», извлечь из него энергию, как нельзя извлечь, например, энергию из числового значения скорости или ускорения, поскольку «движет» процесс не время, а вложенная в процесс сторонняя энергия.
Подобное заключение, объявляющее ложной субстанциональную концепцию, которой придерживался Козырев, требует дополнительного пояснения. Для того чтобы сделать такое заявление, нам пришлось использовать полученное ранее общеизвестное математическое выражение, связывающее между собой некоторые физические величины (второй закон Ньютона), и в результате анализа этого выражения определить свойства временного интервала. Подобный способ объяснения физических явлений широко применяется в современной науке и не является чем-то необычным или недостаточно строгим. Собственно, вся математическая физика построена на этом приеме. Вопрос здесь заключается лишь в том, какое математическое выражение при этом берется за основу, насколько оно соответствует и как точно описывает истинные закономерности реального мира?
Но мы уже указывали, что выражение для временного интервала, выведенное из второго закона Ньютона, является столь же фундаментальным, как и этот закон. А поскольку второй закон Ньютона появился в результате обобщения и осмысления гигантского количества опытных данных, взятых из наблюдений над природными явлениями, то можно считать, что и прямые следствия из этого закона в той же степени соответствуют природным явлениям. То есть выражение для временного интервала можно также считать полученным в конечном счете из обобщения опытных данных, взятых из наблюдений над природными явлениями. В то же время субстанциональная концепция Козырева получена из анализа математического выражения, которому, как мы впоследствии покажем, вообще не соответствует никакая физическая реальность. Это обстоятельство позволяет нам полностью проигнорировать физический смысл и сущность положений теории времени, предложенной Козыревым, не тратя усилий, за некоторыми исключениями, на детальное обсуждение этих положений. Коротко можно лишь заметить, что «зеркала времени», заявленные Козыревым, невозможны по вышеописанным обстоятельствам, а в его экспериментах присутствуют невыясненные доселе артефакты, либо не относящиеся к времени непосредственно необъясненные эффекты.