Литмир - Электронная Библиотека
Содержание  
A
A

Реально существующее – обыденное – время именуется Ньютоном относительным.

«Относительное, кажущееся или обыденное время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год».

Вместо истинного, точного равномерного однородного абсолютного времени, которое существует само по себе, взаимодействует с материей и отражается в физических законах, мы, по представлениям Ньютона, пользуемся его приблизительной, разной точности, несовершенной копией. И если математическое время течет строго равномерно, то воспринимаемое чувствами, относительное такой строгостью не отличается. В зависимости от точки зрения и свойств наблюдателя (постигаемая чувствами!) одна и та же продолжительность будет восприниматься по-разному. То есть чувственное и логическое восприятие относительного времени, по Ньютону, определяется свойствами наблюдающей личности. Можно понять это определение так, что истинное время, существующее само по себе, поскольку оно взаимодействует с материальным миром, предстает перед наблюдателем в виде искаженной, изменчивой, постигаемой чувствами меры продолжительности. Ньютон выступает здесь последователем скорее Платона, нежели Аристотеля. Поэтому, по его представлениям, всеобщим определением времени является именно абсолютное, а особенным – относительное. Но в то же время выражение «совершаемая при посредстве какого-либо движения мера продолжительности» показывает, что Ньютон прекрасно понимал отличие реального времени от того абсолютного, изображение которого использовал в своих вычислениях. Абсолютное время служит для него эталоном, порождающим все промежутки времени, существующие в реальности. Однако реальному, «воспринимаемому чувствами» времени он не находил места в системе законов, которую создавал.

Имея в виду разницу между абсолютным и относительным временем, резонно задать вопрос: если мы переходим от теории к практике и используем относительное время, является ли оно независимой материальной сущностью или не является? То есть идеальное (другой материи) абсолютное время при взаимодействии с материей нашего мира воплощается ли в нечто материальное, что можно не только измерить, но и ощутить? Многие из существующих теорий вынуждены явно или неявно отвечать на этот вопрос утвердительно, что вполне закономерно, так как, практически используя в научных исследованиях абсолютное время Ньютона, мы вынуждены принимать и его противоречивость, считая относительную ипостась времени также обладающей свойством псевдоматериальности. Оговорка же Ньютона – «…при посредстве какого-либо движения…» – имеет, как мы позже увидим, далекоидущие последствия для выяснения поставленного здесь вопроса.

С математической точки зрения время в задачах классической механики повсеместно принимается за всеобщий аргумент, никогда, даже в частных случаях, не становясь функцией. И хотя в многочисленных задачах динамики иногда приходится вычислять промежуток времени через другие составляющие движения, дальше этого дело обычно не заходит.

Первый, кто попытался определить сколько-нибудь приемлемые граничные условия для применения Ньютоновой концепции, был Эйнштейн. Его усилиями были введены релятивистские и гравитационные ограничения. Но и ему вместе с предыдущей попыткой, предпринятой Минковским, мало что удалось сделать для понимания свойств самого используемого времени. Оно оставалось по-прежнему сущностью, внутренние свойства которой – всеобщность, бесконечность, неуничтожимость, неощутимость, независимость, неизменность, подвижность, однонаправленность, необратимость, непрерывность, равномерность, однородность, определенность, аддитивность – никак не обусловливались и принимались аксиоматически. Вся революция в естествознании, предпринятая Эйнштейном, свелась по отношению к Ньютоновому времени в конечном итоге лишь к частичной отмене двух его атрибутов: независимости и неизменности – и замене их на противоположные. При этом все остальные его свойства остались нетронутыми и в постэйнштейновской физике. Последующие исследователи, как, например, Пригожин, обращали свое внимание в основном на частные свойства времени, нимало не пытаясь выяснить его природу. Даже грандиозные успехи астрофизики, оперирующей длительностями, различающимися в 1024 раз, не дали ничего существенного для понимания природы собственно времени.

Можно констатировать, что и по сей день существует своеобразный темпоральный фетишизм, который заключается в том, что реальное исследование свойств времени подменяется мистическим, почти религиозным экстазом перед «таинственным», «самым сложным и противоречивым», «загадочным», «непознаваемым» явлением материального мира. Вместо точно установленных зависимостей в научную практику вводятся художественные образы – «река времени», «стрела времени», которые, несомненно, удовлетворяют наше эстетическое чувство, но ничего не дают для выяснения подлинной природы объекта исследования. Задача, следовательно, заключается в том, чтобы вернуться к бесстрастному и объективно непредвзятому анализу, пользуясь системой принятых в физической науке критериев. При этом необходимо учитывать, что точное знание всегда беднее по форме и внешним проявлениям тех фантазий, которые возникают от незнания и заблуждений, но гораздо богаче их по внутреннему содержанию и значению вытекающих из него непреложных следствий. Поэтому вместо анализа пространных философских спекуляций, существующих на тему времени, обратим свое внимание на простые и очевидные явления, многократно проверенные в повседневной научной практике.

2. Второй закон Ньютона

Время входит во множество закономерностей, являющихся предметом изучения разных отраслей науки. Например, метеорология вся построена на представлениях о неких атмосферных процессах, развивающихся во времени. Точно так же и геотектоника интересуется движением литосферных плит за промежутки времени, не сопоставимые по длительности с атмосферными процессами, но тем не менее столь же определенными, как и периоды изменения погоды. Химики интересуются не только направлением химических реакций, но и временем, за которое они происходят. Теплотехников интересует время сгорания топлива при заданных условиях, астрономов – время существования Вселенной. Даже такая столь далекая от непосредственных нужд современного общества наука, как палеонтология, не могла бы существовать, не имей она возможности использовать общепринятую шкалу времени. Классическая механика, термодинамика, электродинамика, ядерная физика – везде, в явном или скрытом виде, время используется не только как понятие, но и как равноправный параметр рассматриваемых процессов. Поэтому исследование свойств физического времени не должно осуществляться вне рамок подходов, уже оправдавших себя в физической науке. В принципе, анализ природы времени можно начать из любой, произвольно выбранной как исходная, точки современного научного знания, что и демонстрируют многочисленные попытки толкования его свойств учеными разных направлений, когда отправным материалом для высказываний о его природе служат данные того раздела науки, в котором они являются специалистами. В общем же смысле такой исходной точкой должны служить уже известные, твердо установленные закономерности, применяющиеся наукой для использования в своей повседневной практической деятельности. Однако закономерности, например, той же метеорологии, зависят от такого огромного количества одномоментно действующих факторов, что среди них свойства собственно времени теряются. Поэтому для наиболее ясного анализа его природы нужно выбирать, во-первых, закономерности наиболее простые и прозрачные, позволяющие связать время с небольшим количеством известных величин.

3
{"b":"832819","o":1}