Литмир - Электронная Библиотека
Содержание  
A
A

Во-вторых, имеющие максимально общий характер, так как время само является наиболее общей характеристикой бесчисленного количества процессов. В-третьих, достоверность которых не вызывает никаких сомнений.

Среди таких закономерностей вне конкуренции законы Ньютона. Во-первых, их простота не может не вызывать изумления. Во-вторых, всеобщность применения также не имеет себе равных среди физических законов. В-третьих, границы применения этих законов изучены наиболее полно и, оставаясь в пределах этих границ, за достоверность описываемых ими зависимостей можно уже не опасаться, так как за время, прошедшее с момента их обнародования, тысячи исследователей подвергли законы Ньютона придирчивой проверке на соответствие результатам адекватно поставленного эксперимента, который один только является судьей истинности любого физического закона. Следует особо отметить, что законы Ньютона объективно отражают свойства той физической реальности, пусть даже в абстрагированной форме и с некоторой долей условности, в которой мы находимся и одной стороной которой является время.

Первый закон Ньютона для анализа природы времени не дает почти ничего, кроме того, что движение тела в пространстве в отсутствие приложенных сил и сопротивления движению осуществляется бесконечно. Отсюда можно заключить, что время в конкретном факте движения имеет протяженность и эта протяженность может быть, как бесконечной (точнее, достаточно большой), так и равной нулю (то есть исчезающе-малой). Тот же вывод можно сделать и из формулировки третьего закона, признав, что время взаимодействия двух тел также может быть равно как бесконечности (в ограниченном смысле), так и нулю (то есть промежутку ничтожной длительности). Знаменитый же закон всемирного тяготения является стационарным и поэтому пока не принимает участия в нашем анализе. И лишь формулировка второго закона Ньютона, содержащая время в неявном виде, позволяет, как мы увидим впоследствии, пролить свет на природу физического времени, в котором и происходит его – закона – действие.

Итак, рассмотрим второй закон Ньютона, действующий в нерелятивистском приближении и в макромире:

Природа и свойства физического времени - _0.jpg

где F – сила, приложенная к материальному телу;

m – масса тела;

Природа и свойства физического времени - _1.jpg

– ускорение, вызываемое силой.

Несмотря на то что мы не знаем вполне определенно, вследствие каких причин при изменении скорости тела появляется сила или почему приложенная к нему сила вызывает соответствующее изменение его скорости, сам по себе факт таких последствий, происходящий во времени, не вызывает никаких сомнений. Точно так же – хотя мы не знаем достаточно достоверно, почему коэффициент, связывающий изменение скорости тела с приложенной силой, не является постоянным при подсчете разных значений силы и ускорения – существование такого изменяющегося коэффициента, сомнения не вызывает. И связь всех четырех величин, входящих в закон, поскольку многократно проверено, что он адекватно отражает положение дел в действительности, определяется лишь свойствами окружающей нас реальности (мировыми константами) в том месте пространства, где мы проводим эксперимент, и ничем другим. При этом необходимо учитывать, что абстрактное изображение реальных движений всегда описывает их с некоторой долей условности. То есть нужно учитывать, что между теоретическим описанием и реальными явлениями всегда стоит неполнота этих описаний. Объясняя движение тела с помощью законов Ньютона, мы должны были бы учитывать несовершенство этого описания и некоторые несоответствия его реальному положению дел. Например, учитывать сопротивление воздуха, если это полет снаряда, действие силы Кориолиса, если это полет ракеты-носителя, суточное движение точки земной поверхности, если мы ведем астрономические расчеты. Но всякий раз, применяя наши описания для вычисления реальных движений, мы вынужденно игнорируем многочисленные второстепенные несоответствия, заведомо не превышающие принятую погрешность расчетов, и оставляем только те обстоятельства, которые превышают эту погрешность, либо учитываем эту погрешность при определении окончательного результата. Именно в таком смысле и сделано заявление, что законы Ньютона многократно проверены на соответствие реальному положению дел. И отсутствие в действительности истинно инерциальных систем отсчета, в которых только и справедливы законы Ньютона, вовсе не препятствует применять их – законы – для использования в практической деятельности как раз в силу описанного здесь принципа.

Согласно Ньютону, время, использующееся в его втором законе, является абсолютным, а временной промежуток, отсчитываемый на некотором отрезке его «хода», имеет только одну характеристику, а именно длительность. Однако можно предположить, что одной этой характеристикой свойства времени, применяющегося в законах Ньютона, не исчерпываются, и, кроме нее, есть и другие, пока скрытые от нас свойства. Для их определения воспользуемся методом самого Ньютона, о котором он так говорит в своем, уже упомянутом знаменитом сочинении «Математические начала натуральной философии»: «Силы природы и простейшие законы их действия они (последователи экспериментальной философии. – Л. М.) выводят аналитически из каких-либо избранных явлений, а затем синтетически получают законы остальных явлений».

Чтобы предполагаемые нами свойства времени, употребляемого в научных исследованиях и считающегося абсолютным, стали доступны для дальнейшего анализа, необходимо вывести во втором законе Ньютона время из-под знака дифференциала и представить в явном виде. Откажемся от представления времени в виде всеобщего аргумента и представим его в виде функции других величин, входящих во второй закон Ньютона. С этой целью рассмотрим простейшую задачу динамики.

Пусть материальная точка с постоянной массой m движется под действием постоянной по модулю и направлению силы F вдоль оси X. Несмотря на то что сила и скорость – векторы, из-за совпадения направления движения с направлением действия силы эту задачу можно решать в скалярном представлении.

Природа и свойства физического времени - _2.jpg

Запишем второй закон в виде:

Природа и свойства физического времени - _3.jpg

и найдем закон движения точки в виде

Природа и свойства физического времени - _4.jpg

Так как

Природа и свойства физического времени - _5.jpg
то, умножив обе части уравнения на dt и беря от них интеграл, найдем, что

Природа и свойства физического времени - _6.jpg

Помня, что

Природа и свойства физического времени - _7.jpg
запишем:

Природа и свойства физического времени - _8.jpg

Умножая обе части полученного уравнения на dt и снова интегрируя, найдем:

Природа и свойства физического времени - _9.jpg

Учитывая начальные условия, получим:

Природа и свойства физического времени - _10.jpg

Заметим, что х в нашем случае – строго монотонная функция. Тогда, по соответствующей теореме, она имеет обратную функцию:

Природа и свойства физического времени - _11.jpg

Рассмотрим квадрат этой функции:

Природа и свойства физического времени - _12.jpg

Умножим числитель и знаменатель правой части на х и поделим на 2, учитывая при этом, что:

Природа и свойства физического времени - _13.jpg

Учтем, что произведение

Природа и свойства физического времени - _14.jpg
есть работа силы F на пути движения точки массой m. Заметим специально, что материальную точку приводит в движение сила, существование которой из данного движения не выводится (сторонняя сила), поэтому и работа, которая этой силой производится, есть работа сторонней силы.

4
{"b":"832819","o":1}