Области применения газовой турбины определяются её особенностями: исключительной лёгкостью, простотой, отсутствием вспомогательных устройств вроде котла и т. п.
Газовая турбина не может соперничать с крупной установкой — паровой или дизельной; в этих условиях турбина «съедает» больше горючего. Но как дополнение к этой установке она вполне оправдывает себя. Поэтому газовая турбина очень часто работает на отходящих газах нефтяных, паросиловых и дизельных установок в качестве вспомогательной машины.
Совершенно особое место заняла газовая турбина в авиации благодаря своему весьма малому весу при значительной мощности. Однако соединить вал газовой турбины с воздушным винтом необходимо через коробку шестерён, снижающую число оборотов. Газовая турбина вращается значительно быстрее, чем это необходимо винту.
С успехом осуществлены опыты применения газовых турбин для турболокомотивов и для морских турбоходов.
В борьбе газа с паром особенно важным обстоятельством является то, что газовой турбине не нужна вода. Это делает её особенно ценной в безводных пустынных районах.
Недостаток газовой турбины, который, правда, с каждым годом всё более и более преодолевается, — это низкий коэффициент полезного действия турбины. Компрессор газотурбинной установки подаёт в камеру сгорания очень много воздуха. На вращение компрессора уходит много энергии. Первые газовые турбины имели весьма низкий коэффициент полезного действия. В усовершенствованных турбинах производится повышение температуры сжигания топлива, осуществляется охлаждение воздуха в компрессоре и подогрев его отходящими газами в регенераторе перед поступлением в камеру сгорания. Всё это намного повышает коэффициент полезного действия современной газовой турбины.
Дальнейшее улучшение этого, по существу молодого ещё, двигателя сулит ему большие возможности, особенно если газ будет получаться не от сжигания нефти, а от сжигания угля непосредственно под землёй, как это уже и осуществляется в Советском Союзе, претворяя в жизнь предложение великого учёного России Д. Менделеева.
11. Реактивный двигатель
Казалось бы, в лице бензинового мотора авиация получила могучее и надёжное «сердце», которое в состоянии обеспечить большие скорости самолётов.
Однако действительность говорит иное.
На очень больших скоростях, порядка 800–900 километров в час, которые уже достигнуты современными самолётами, воздушный винт — движущий орган машины — перестаёт надёжно тянуть самолёт. Какую бы большую мощность мы ни подводили от мотора к винту, он на больших скоростях всё равно не потянет самолёт быстрее. Воздушный винт и обычный поршневой бензиновый мотор не в состоянии обеспечить самолёту очень больших скоростей.
На помощь авиации приходит совершенно новый двигатель — реактивный.
У нас, в России, были впервые разработаны основные типы реактивных двигателей и произведены теоретические исследования их работы и полёта в пределах и за пределами атмосферы.
Впервые наиболее чётко о возможности применения реактивного двигателя в авиации сказал в 1881 году в своём завещании приговорённый к смертной казни за изготовление бомбы, убившей Александра II, революционер-народник Николай Иванович Кибальчич.
Заключённый в каземат Петропавловской крепости, за несколько дней до своей смерти Кибальчич составил «Проект воздухоплавательного прибора» — первый проект реактивного летательного аппарата. «Находясь в заключении, — писал он, — за несколько дней до своей смерти, я пишу этот проект. Я верю в осуществимость моей идеи, и Эта вера поддерживает меня в моём ужасном положении».
Не желая унести в могилу тайну своего замечательного изобретения, революционер просил устроить ему перед смертью свидание с кем-либо из учёных, чтобы передать свой проект потомкам. В свидании Кибальчичу отказали.
После Великой Октябрьской революции этот замечательный проект ракетоплана, который мог перемещаться в воздухе и в безвоздушном пространстве, был найден среди особо секретных дел царской охранки.
Но ещё до того, как был извлечён из архивов охранки проект Кибальчича, с идеей реактивного полёта выступил великий русский учёный Константин Эдуардович Циолковский.
В 1903 году в журнале «Научное обозрение» появилась его статья «Исследование мировых пространств реактивными приборами». В этой работе Циолковский пошёл значительно дальше Кибальчича; он дал не только строго научное обоснование возможности использования реактивного двигателя для полётов, но и разработал первые конструкции ракетопланов.
Великий русский учёный К. Э. Циолковский (родился в 1857 г., умер в 1935 г.).
Непрерывно совершенствуя свои изыскания, углубляя их, великий «фантаст и мечтатель», как его называли в те дни, занимался вполне реальным делом.
Увлечённый мыслью о межпланетных полётах, Циолковский сорок пять лет назад создал проект жидкостного реактивного двигателя, который по принципу своему явился предшественником современных жидкостных реактивных двигателей самолётов и реактивных снарядов.
В те годы, когда воздухоплавание только ещё утверждалось, Циолковский уже говорил: «За эрой аэропланов винтовых должна следовать эра аэропланов реактивных или аэропланов стратосферы».
Что же представляет собой реактивный двигатель? Как он работает?
С давних пор передвижение по земле в нашем сознании прочно связано с вращающимся колесом. Вращение — основа современной техники. И когда мы говорим о двигателе — будь то паровой, внутреннего сгорания или электрический, — мы знаем, что его работа заключается во вращении; мотор вращает колёса автомашины, винт корабля, винт самолёта, которые сообщают в конечном итоге поступательное движение тому или иному виду транспорта.
Реактивный двигатель не имеет ни колёс, ни винтов; он создаёт тягу, как бы отталкиваясь от газов, которые в нём самом образуются.
Основное преимущество реактивной техники — простота. Взгляните на современный бензиновый авиамотор в разрезе. Какое обилие механизмов, колёс, поршней и многих других частей упрятано в этот двигатель. Реактивный же двигатель очень прост. Имея ту же мощность, реактивный двигатель в три-четыре раза легче поршневого авиамотора. Кроме того, он имеет малый размер, а это позволяет придать самолёту обтекаемую форму, необходимую для уменьшения сопротивления воздуха в полёте. По управлению своему и по обслуживанию новый тип двигателя также проще обычных авиамоторов.
Рис. 22. При выстреле пушка откатывается назад реактивной силой.
Как же работает такой двигатель?
В начале книги мы приводили сравнение между пушкой и двигателем внутреннего сгорания. Посмотрим внимательно ещё раз, как стреляет пушка. Мы поджигаем порох. Он взрывается. Снаряд вылетает из ствола-цилиндра под давлением газов. Но в это же мгновение сама пушка под давлением тех же газов откатывается в противоположную сторону (рис. 22). Почему это происходит? Газы, образующиеся при выстреле в стволе пушки, давят во все стороны одинаково. При этом давление газов о днище ствола пушки не уравновешивается противоположным давлением со стороны ядра, так как ядро вылетело и никакой жёсткой стенки для газов уже нет. Это давление газов о днище ствола и откатывает пушку назад. Если из пушки продолжать стрелять непрерывно и не закреплять её, она будет непрерывно катиться под действием силы отдачи или, как её называют, реактивной силы в сторону, обратную направлению выстрела. На этом и основана работа реактивного двигателя. Для получения реактивной тяги в таком двигателе необходимо, чтобы из него вытекала непрерывная струя газов в сторону, противоположную движению самого двигателя.