Литмир - Электронная Библиотека
A
A

На первом в мире самолёте русский изобретатель поставил две паровые машины, так как бензинового мотора в те годы ещё не существовало. Эти паровые машины имели малую мощность. Можайский понимал это и использовал для дополнительного разгона самолёта высокий наклонный настил, с которого самолёт скатывался при взлёте.

Блестящая конструкция самолёта Можайского безусловно обеспечила бы ему ещё более поразительные успехи, если бы тогда существовал более лёгкий и мощный двигатель, чем паровой.

Самолётостроение не могло широко войти в жизнь до тех пор, пока не был найден двигатель, способный сам тянуть себя в воздухе. Дело в том, что для самолёта лёгкий и достаточно мощный двигатель есть необходимое условие возможности полёта. Лётчики-истребители шутливо говорят: «Самолёт по существу — это мотор, к которому приделаны крылья и хвост для того, чтобы он мог держаться в воздухе». Подсчитано, что полёт возможен только тогда, когда двигатель весит не свыше 5–6 килограммов на лошадиную силу развиваемой мощности.

Авиация требует от двигателей следующих качеств: лёгкости, малых размеров, исключительной надёжности, способности мотора работать на разной высоте полёта и, наконец, экономичности — двигатель должен брать мало горючего — это определяет дальность полёта.

На протяжении всей истории развития авиации и двигателей конструкторы самолётов всегда обращали свои взоры к двигателю в надежде, что именно он сможет поднять их летательный аппарат в воздух. Так было с паровой машиной и с газовым двигателем. Так было с первыми бензиновыми моторами.

Когда почти через 20 лет после Можайского в 1903 году братья Райт совершили свой полёт на аппарате тяжелее воздуха с 12-сильным бензиновым мотором, весившим 5,25 килограмма на одну лошадиную силу, двигатель не мог сам оторвать самолёт от земли. Самолёту в момент подъёма создавали дополнительный толчок, привязывая его за верёвку к грузу, который падал со специальной вышки.

Когда в 1908 году самолёт перелетел через Ламанш, то его тянул уже 100-сильный двигатель. В этом моторе кривошип был неподвижным — вращались сами цилиндры с поршнями, охлаждаясь воздухом и одновременно выполняя роль маховика. Удельный вес этого мотора был по тому времени поразительно мал — всего 1 килограмм на лошадиную силу, но смазки и горючего мотор «ел» за пятерых; к тому же он каждую минуту грозил прекратить работу вследствие своей ненадёжности.

Ещё более оригинальный авиационный двигатель был разработан и построен русским изобретателем Уфимцевым. В этом моторе цилиндры, вращаясь в одну сторону, приводили в движение один винт, а вал двигателя, вращаясь в обратную сторону, был соединён со вторым винтом.

Усилия авиационных инженеров были направлены не только на то, чтобы облегчить двигатель, но и на то, чтобы увеличить его надёжность и экономичность. Лёгкие двигатели брали в путь столько горючего и масла, что при продолжительных полётах их лёгкость совершенно не окупалась — запас горючего весил очень много. Появился более тяжёлый, но и более надёжный и экономичный шестицилиндровый мотор с водяным охлаждением; он весил 1,67 килограмма на лошадиную силу мощности. Мотор был лучше прежних, но вес его был велик.

В 1916 году был построен такой же надёжный мотор с удельным весом 0,88 килограмма на лошадиную силу; этот мотор имел алюминиевые поршни и алюминиевый блок мотора со стальными гильзами.

С этого момента авиационные, а затем и автомобильные двигатели начали строиться с применением высокопрочных лёгких сплавов.

Дизель также применяется в авиации.

Бензиновый авиадвигатель расходует в час на одну лошадиную силу около 250 граммов дорогостоящего бензина, а дизель — всего 180 граммов более дешёвого дизельного топлива, да к тому же более безопасного в пожарном отношении. Поэтому сейчас дизели начали применяться главным образом в дальней авиации.

Устройство авиадвигателей крайне разнообразно. В стремлении уменьшить размеры мотора, обеспечить лучшее его охлаждение и надёжность двигателям стали придавать самые необычные формы. Есть моторы с расположением цилиндров в ряд, наклонно в виде буквы V, в виде W, в форме буквы Н и т. п. Очень много двигателей воздушного охлаждения выпускается с расположением цилиндров в виде звезды (рис. 20).

Мотор - i_021.png

Рис. 20. Авиационный мотор воздушного охлаждения с расположением цилиндров в виде звезды.

Необычайно возросла мощность авиации. Если на первых самолётах стоял моторчик в несколько десятков лошадиных сил, то двигатель современного самолёта нередко имеет мощность свыше 2000 лошадиных сил.

Нагнетатели подкачивают воздух в цилиндры современных двигателей, чтобы самолёт мог подняться на высоту до 15–17 километров, где в разрежённом воздухе нехватает кислорода для горения. Теперь не редкость, что самолёты пролетают без посадки свыше 10 тысяч километров.

У нас, в Советском Союзе, есть прекрасные самолётостроители: А, С. Яковлев, А. Н. Туполев, Н. Н. Поликарпов, С. В. Ильюшин и замечательные конструкторы моторов: А. А. Микулин, А. Д. Швецов и В. Я. Климов. Дружной работой вместе со всемирно прославленными лётчиками они принесли нашей авиации заслуженную славу.

О силе моторов нашей авиации красноречиво говорят полёты советских лётчиков через Северный полюс, знаменитые перелёты Валерия Чкалова, замечательные рекорды нашей авиации, подвиги наших лётчиков-героев на войне.

10. Газовая турбина

Существует ещё один тип двигателя внутреннего сгорания, о котором следует рассказать. Это — газовая турбина. Предшественником газовой турбины является паровая турбина.

В паровой турбине действует пар высокого давления, поступающий из парового котла. Газовая турбина работает за счёт струи раскалённых газов, получаемых от сжигания горючего в камере сгорания самой турбины.

Любая турбина имеет один или несколько дисков с лопатками наподобие детской игрушки-мельницы. Пар или газ при своём стремительном движении в турбине обтекает эти лопатки и вращает диски, посаженные на вал двигателя.

Так без поступательного движения поршней, преобразуемого коленчатым валом и маховиком во вращение вала мотора, мы сразу получаем круговое вращение вала турбины.

Газовая турбина (рис. 21) состоит из дисков турбины и компрессора, установленных на одном валу. Турбина работает так: воздух нагнетается компрессором в камеру сгорания турбины, куда затем впрыскивается жидкое горючее. Горючая смесь сгорает при очень высокой температуре, газы расширяются, устремляются к выхлопному отверстию, по пути попадают на лопатки турбины и приводят их во вращение. При огромной скорости своего движения газы раскручивают диск с лопатками, подобно тому, как вертушка вращается в руках бегущего ребёнка под действием набегающей струи воздуха. Нередко число оборотов дисков доходит до 16 тысяч в минуту! При этом температура входящих газов достигает тысячи градусов. Даже трудно представить себе — нагретые почти до красного каления лопатки турбины несут на себе очень большую нагрузку. Их разрывает огромная центробежная сила как раз в момент наибольшей их слабости — тогда, когда они накалены. Ни один из обычных материалов не может выдержать такой нагрузки. Это долгое время сдерживало внедрение газовых турбин; конструкторы не могли подобрать соответствующего материала для лопаток: лопатки быстро сгорали.

Мотор - i_022.png

Рис. 21. Схема работы современной газовой турбины.

Лишь несколько лет назад была, наконец, найдена специальная сталь, подходящая для таких условий работы. Это — жароупорная сталь; она не теряет свою прочность при высоких температурах. Теперь газовая турбина входит в практику.

8
{"b":"815047","o":1}