Литмир - Электронная Библиотека
A
A

Изоэлектрическая точка (ИЭТ, pI) – значение pH среды, при котором суммарный заряд амфотерного соединения равен нулю

Полипептиды – биополимеры, содержащие от 10 до 50 аминокислотных остатков, связанных пептидными связями.

Посттрансляционная модификация – процесс образования функционально активных белков из синтезированных на рибосомах полипептидных цепей с использованием механизма частичного протеолиза (тримминга) и химической модификации аминокислотных радикалов (гидроксилирование, карбоксилирование, фосфорилирование, окисление и др.)

Фолдинг – процесс формирования третичной (трехмерной) пространственной структуры белка из полипептидной цепи при участии специфических белков-шаперонов.

Шапероны – группа белков, обеспечивающих правильную пространственную укладку полипептидной цепи в процессе посттрансляционной модификации, а также ренатурацию поврежденных белков и стабилизацию белков с неустойчивой конформацией

Нуклеотиды и нуклеиновые кислоты

Нуклеиновые кислоты – это биополимеры, мономерами которых являются нуклеотиды. Любой нуклеотид в своей структуре имеет 3 фрагмента:

1) пуриновое или пиримидиновое азотистое основание;

2) остаток сахара-пентозы (рибозы или дезоксирибозы);

3) остаток фосфорной кислоты.

В зависимости от числа фосфатных групп различают нуклеозидмонофосфаты (например, АМФ, ГМФ), нуклеозиддифосфаты (УДФ, ЦДФ) и нуклеозидтрифосфаты (АТФ, УТФ); название нуклеотидов формируется в зависимости от азотистого основания и числа остатков фосфорной кислоты.

Нуклеиновые кислоты выполняют функцию хранения и передачи наследственной информации, а их структурные компоненты (нуклеотиды) входят в состав коферментов (НАД+, ФАД, КоА), являются макроэргическими соединениями (АТФ, УТФ, ЦТФ, ГТФ, ТТФ) и вторичными посредниками в передаче гормонального сигнала (цАМФ, цГМФ).

Гетероциклы, лежащие в основе структуры азотистых оснований:

Рабочая тетрадь-тренажер по биохимии - i_016.png

К пуриновым азотистым основаниям относят аденин (6-аминопурин) и гуанин (2-амино-6-гидроксипурин).

Рабочая тетрадь-тренажер по биохимии - i_017.png

К пиримидиновым азотистым основаниям относят урацил (2,4-дигидроксипиримидин), тимин (5-метилурацил; 2,4-дигидрокси-5-метилпиримидин), цитозин (4-амино-2-гидроксипиримидин).

Рабочая тетрадь-тренажер по биохимии - i_018.png

Различают также минорные азотистые основания, которые представляют собой видоизмененные азотистые основания, отличающиеся по строению от аденина, гуанина, урацила и тимина; к ним относятся 5-оксиметилцитозин, дигидроурацил, псевдоурацил, 1-метилурацил, оротовая кислота, N6-метиладенин, N-метилгуанин, и др.

Основные термины:

Азотистые основания – общее название азотсодержащих гетероциклических органических соединений, входящих в состав нуклеозидов и нуклеотидов

Нуклеозиды – органические природные соединения, состоящие из пиримидинового или пуринового основания, связанного N-гликозидной связью с остатком сахара пентозы

Нуклеотиды – природные или синтетические соединения, у которых гидроксильный остаток пентозы в составе нуклеозида этерифицирован одной или несколькими фосфатными группами

Нуклеиновые кислоты – природные органические соединения – биополимеры, мономерами которых являются мононуклеотиды, связанные 3,5 -фосфодиэфирной связью

Ферменты и коферменты

Ферменты (от лат. fermentum «закваска»), или энзиимы – обычно сложные белковые соединения, РНК (рибозимы) или их комплексы, ускоряющие химические реакции в биологических системах. Ферменты являются биокатализаторами, т. е. ускоряют химические реакции в клетке.

Проферментами зимогенами называют неактивные предшественники ферментов, которые могут активироваться через избирательное расщепление белковой молекулы, реакции фосфорилирования или дефосфорилирования, диссоциации, а также агрегации протомеров и др.

Поскольку все ферменты являются белками, то обладают всеми физико-химическими свойствами белков. По структуре ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин, трипсин, лизоцим. Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть – кофактор (коэнзим, кофермент).

С химической точки зрения, кофермент – это низкомолекулярное органическое соединение, являющееся составной частью сложного белка, обладающего каталитической активностью; большинство коферментов являются производными водорастворимых витаминов, а также нуклеозидов, пептидов и др.

Рабочая тетрадь-тренажер по биохимии - i_019.png

Рис. 3. Структура важнейших коферментов (НАД и ФАД)

Все ферменты, изученные к настоящему времени, включены в особый каталог (классификация ферментов – КФ) и имеют свой классификационный номер, в котором первая цифра указывает на принадлежность к одному из 7 классов ферментов:

1) оксидоредуктазы

2) трансферазы

3) гидролазы

4) лиазы

5) изомеразы

6) лигазы (синтетазы)

7) транслоказы

Таблица 7. Взаимосвязь витаминов и коферментов

Рабочая тетрадь-тренажер по биохимии - i_020.png

Принципиальная структура фермента включает:

Рабочая тетрадь-тренажер по биохимии - i_021.png

а) активный центр фермента – это уникальная комбинация аминокислотных остатков белковой молекулы, участвующих в присоединении и превращении субстрата, формируется на уровне третичной структуры. В активном центре выделяют субстратсвязывающий (якорный) участок и каталитический участок.

б) аллостерический центр – участок фермента, расположенный вне активного центра и присоединяющий низкомолекулярный аллостерический эффектор.

Примерами аллостерических эффекторов являются низкомолекулярные лиганды, вызывающие изменение активности фермента вследствие их связывания в аллостерическом центре (НАД+, НАДН, АТФ, АДФ и др.).

Изучение ферментов (энзимов) выделено в отдельную науку – энзимологию. Все ферменты имеют белковую природу, чем объясняются их свойства (термолабильность, зависимость активности от рН среды, высокоспецифичное действие по отношению к реагирущим веществам – субстратам ферментативной реакции).

Рабочая тетрадь-тренажер по биохимии - i_022.png

Рис. 4. Пример ферментативной реакции с участием оксидоредуктазы

Важнейшей характеристикой ферментативной реакции является константа Михаэлиса M) – это величина, характеризующая сродство фермента к субстрату; численно равна концентрации субстрата, при которой скорость реакции составляет половину максимальной скорости (Vmax).

4
{"b":"810411","o":1}