Литмир - Электронная Библиотека
A
A

Три уровня причинности

Возможно, к этому моменту я создал впечатление, что способность организовывать знания, деля их на причины и следствия, едина и мы приобрели ее сразу. На самом деле, исследуя машинное обучение, я узнал, что для изучения причинно-следственных связей необходимо овладеть когнитивными навыками по крайней мере на трех конкретных уровнях – видения, делания и воображения.

Первый навык, видение или наблюдение, подразумевает умение определять закономерности в окружающей среде. Он присутствует у многих животных и был у первых людей до Когнитивной Революции. Второй навык, делание, связан с умением предсказывать, какой эффект вызовут намеренные изменения в окружающей среде, и выбирать, какие изменения надо внести, чтобы получить желаемый результат. Очень немногие виды продемонстрировали элементы этого навыка. Использование инструментов, если это сознательные действия, а не случайность и не копирование предков, может свидетельствовать о переходе на этот следующий уровень. Но даже у пользователей инструментов не всегда есть «теория», которая говорит, почему инструмент работает и что делать, если он не работает. Для этого необходимо достичь уровня понимания, который допускает воображение. Именно этот третий уровень в первую очередь подготовил нас к дальнейшим революциям в науке и сельском хозяйстве и резко преобразил воздействие нашего вида на планету.

Это я обосновать не могу, зато могу доказать математически, что три уровня фундаментально различны, и на каждом из них раскрываются способности, которых нет на предыдущих. Схема, которую я использую для демонстрации, восходит к Алану Тьюрингу, пионеру в исследовании искусственного интеллекта, предложившему классифицировать когнитивную систему, ориентируясь на вопросы, на которые она способна ответить. Такой подход оказался исключительно плодотворным, если говорить о причинности, потому что он позволяет избежать долгих и непродуктивных дискуссий о том, что именно представляет собой причинность, и сосредоточен на конкретном вопросе, на который реально ответить: что делает мыслитель, изучающий причинность? Или, если точнее, что может вычислить организм, имеющий модель причинности, тогда как организм, не имеющий модели причинности, это вычислить не в состоянии?

В то время как Тьюринг хотел создать бинарную классификацию, чтобы отличать человека от нечеловека, у нашей есть три уровня, соответствующих все более и более сложным причинным запросам. Используя эти критерии, можно собрать из запросов трех уровней одну Лестницу Причинности (рис. 3.) Мы будем еще не раз возвращаться к этой метафоре.

Давайте подробно рассмотрим каждую ее перекладину. На первом уровне – ассоциаций – мы ищем повторяющиеся детали в наблюдениях. Этим занимается сова, которая наблюдает, как двигается крыса, и анализирует, где грызун окажется через секунду. Этим же занимается компьютерная программа для игры в го – она изучает базу данных с миллионами игр и может вычислить, какие ходы связаны с более высоким процентом выигрыша. Мы говорим, что одно событие связано с другим, если наблюдение одного изменения повышает вероятность увидеть другое.

Думай «почему?». Причина и следствие как ключ к мышлению - i_003.png

Рис. 3. Лестница Причинности с представляющими ее организмами на каждом уровне. Большинство животных, так же как и сегодняшние обучающиеся машины, находятся на первой перекладине – они учатся по ассоциации. Пользователи инструментов вроде первых людей находятся на второй перекладине – если действуют по плану, а не просто имитируют. Кроме того, на этом уровне можно ставить эксперименты, чтобы узнать, какой эффект дает интервенция. Предположительно именно так младенцы получают большинство знаний о причинности. Те же, кто учится с помощью контрфактивных рассуждений, находятся на верхней перекладине и могут вообразить несуществующие миры и назвать причины для наблюдаемых феноменов.

Первая перекладина лестницы подразумевает предсказания, основанные на пассивных наблюдениях. Ее характеризует вопрос: «Что, если я увижу…?» Например, представьте директора по маркетингу в универмаге, который спрашивает: «Какова вероятность, что потребитель, который купил зубную пасту, также приобретет зубную нить?» Такие вопросы – самая суть статистики, и на них отвечают прежде всего, собирая и анализируя данные. В нашем случае на этот вопрос получится ответить, взяв данные о покупательском поведении всех клиентов, выбрав тех, кто купил зубную пасту, и, сосредоточившись на последней группе, вычислить долю тех, кто приобрел еще и зубную нить. Эта пропорция, также известная как условная вероятность, измеряет (для больших объемов данных) степень связи между покупкой пасты и покупкой зубной нити. Мы можем записать это в символах как P (зубная нить | зубная паста). P обозначает вероятность, вертикальная линия – «при условии, что вы видите».

Статистики предложили много изощренных методов, которые позволяют сократить большой объем данных и выявить связи между переменными. Корреляция или регрессия – типичная мера взаимосвязи, которая часто упоминается в этой книге. Чтобы увидеть ее, необходимо провести линию, ориентируясь на распределение единиц наблюдения, и продолжить ее уклон. Некоторые связи имеют очевидную интерпретацию с точки зрения причинности; другие могут ее не иметь. Но одна только статистика не скажет нам, что причина, а что следствие – зубная паста или зубная нить. С точки зрения менеджера по продажам это может не иметь особого значения. Точные предсказания не нуждаются в хороших объяснениях. Сова отлично охотится, не понимая, почему крыса всегда движется из точки A в точку B.

Некоторые читатели могут быть удивлены тем, что я разместил обучающиеся машины наших дней прямо на первой перекладине Лестницы Причинности – рядом с мудрой совой. Такое ощущение, что почти каждый день мы слышим о стремительном прогрессе систем машинного обучения – о самоуправляемых автомобилях, системах распознавания речи и, особенно в последнее время, об алгоритмах глубинного обучения (или глубинных нейросетях). Как же они могут до сих пор оставаться на первом уровне?

Успехи глубинного обучения стали по-настоящему примечательными и оказались сюрпризом для многих из нас. В то же время глубинное обучение оказалось успешным в основном потому, что показало: определенные вопросы или задания, которые мы считали трудными, на самом деле не являются таковыми. Оно не коснулось по-настоящему сложных вопросов, которые до сих пор не дают нам создать искусственный интеллект, подобный человеческому. В результате общественность верит, что машины с «сильным ИИ», которые думают, как человек, вот-вот появятся или, возможно, уже появились. В реальности это максимально далеко от правды. Я полностью согласен с Гэри Маркусом, нейроученым из Нью-Йоркского университета, который недавно писал в «Нью-Йорк таймс» о том, что сфера искусственного интеллекта «полнится микрооткрытиями», которых хватает для хороших пресс-релизов, но машины все еще огорчительно далеки от познания, подобного человеческому. Мой коллега Эднан Дарвиш, специалист по компьютерным наукам из Калифорнийского университета в Лос-Анджелесе, назвал свою программную статью «Интеллект как у человека или способности как у животных?» и, я думаю, очень точно поставил в ней интересующий нас вопрос. Сильный искусственный интеллект нужен для того, чтобы производить машины с интеллектом, подобным человеческому, которые будут способны общаться с людьми и направлять их. В то же время глубинное обучение дает нам машины с действительно впечатляющими способностями, но без интеллекта. Разница здесь глубокая, и ее причина – отсутствие модели реальности.

Точно так же, как 30 лет назад, программы машинного обучения (включая программы с глубинными нейросетями) практически всегда действуют в режиме ассоциаций. Они используют поток наблюдений, к которым пытаются приспособить функцию, по существу как статистик, который старается увидеть линию в скоплении точек – единиц информации. Глубинные нейросети повышают сложность подобранной функции, добавляя много слоев, но процесс подбора до сих пор базируется на необработанных данных. Чем больше данных используется, тем выше становится точность, но «суперэволюционного ускорения» не происходит. Если, например, программисты беспилотной машины захотят, чтобы она по-разному реагировала на новые ситуации, им придется быстро добавить эти новые реакции. Машина сама не поймет, что пешеход с бутылкой виски в руке, вероятно, по-своему отреагирует на сигнал. Это отсутствие гибкости и приспособляемости неизбежно для любой системы, которая работает на первом уровне нашей Лестницы Причинности.

8
{"b":"804860","o":1}