Литмир - Электронная Библиотека

Метан (СН4) имеет как природное, так и антропогенное происхождение. Парниковая активность метана примерно в 21 раз выше, чем у углекислого газа. Время жизни метана в атмосфере составляет примерно 12 лет. Сравнительно короткое время жизни в сочетании с большим парниковым потенциалом делает его кандидатом для смягчения последствий глобального потепления в ближайшей перспективе.

Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов).

Глобальное потепление или глобальное похолодание? - _6.jpg

Рис. 1.8. Круговорот диоксида углерода

В период с 1000 по 1700 годы концентрация метана упала на 40%, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель, пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов. Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет.

Закись азота (N2O) – третий по значимости парниковый газ Киотского протокола. Выделяется при производстве и применении минеральных удобрений, в химической промышленности, в сельском хозяйстве и т. д. На него приходится около 6% глобального потепления.

Перфторуглероды – ПФУ (Perfluorocarbons – PFCs). Углеводородные соединения, в которых фтор частично замещает углерод. Основным источником эмиссии этих газов является производство алюминия, электроники и растворителей. При алюминиевой плавке выбросы ПФУ возникают в электрической дуге или при так называемых анодных эффектах.

Гидрофторуглероды (ГФУ) – углеводородные соединения, в которых галогены частично замещают водород.

Гексафторид серы (SF6) – парниковый газ, использующийся в качестве электроизоляционного материала в электроэнергетике. Гексафторид серы (элегаз, или шести фтористая сера) – неорганическое вещество, при нормальных условиях тяжелый газ, в 5 раз тяжелее воздуха. Выбросы происходят при его производстве и использовании. Чрезвычайно долго сохраняется в атмосфере и является активным поглотителем инфракрасного излучения. Это соединение, даже при относительно небольших выбросах, обладает потенциальной возможностью влиять на климат в течение продолжительного времени в будущем.

Озон– парниковый газ, находящийся как в стратосфере, так и в тропосфере. Но определить его значение в парниковом сложнее по сравнению с другими газами, так как территориальное распределение этого газа очень изменчиво.

В 2000–2010 гг. глобальные выбросы парниковых газов (ПГ) росли быстрее (на 2,2% в год), чем в три предшествующих десятилетия (на 1,3% в год в 1970–2000 гг.), несмотря на глобальный экономический кризис и усилия растущего числа стран реализовать Рамочную конвенцию ООН об изменении климата и Киотский протокол. За последние четыре десятилетия накопленные выбросы углекислого газа увеличились с 900 млрд т СО2 в 1970 г. до 2 000 млрд т в 2010 г. Выбросы ПГ от сжигания топлива в 2013 г. превысили 32 млрд т СО2, и при отсутствии жестких мер политики по их контролю могут вырасти до 50–70 млрд СО2 к 2050 г. и до 90 млрд т СО2 – к 2100 г.

Расчеты показывают, что без существенных дополнительных мер по контролю за выбросами в ближайшие 20 лет будет практически невозможно удерживать концентрацию ПГ в атмосфере в рамках 450–500 ppm. Это означает, что потребуются большие усилия по снижению выбросов в 2030–2050 гг. или широкомасштабное применение технологий удаления ПГ из атмосферы либо ее охлаждения в последующие годы. Хотя смягчение воздействия на климат сопряжено с существенными затратами, они могут быть снижены за счет устранения барьеров для проникновения на рынок низкоуглеродных технологий и возобновляемых источников энергии.

Без сомнения человеческая деятельность в масштабах планеты негативно влияет на окружающую среду. В 2014 году глобальные выбросы по вине человека составили 9,795 гигатонн углерода или 35,9 гигатонн углекислого газа CO2, природными процессами (вулканическая деятельность, дегазация глубинных разломов, выделения мировым океаном, разложение органики, и т. д.) выбросы составили 119 гигатонн углерода или 439 гигатонн CO2. Человеческая деятельность слишком мала по сравнению с природными процессами, чтобы серьезно влиять на выбросы СО2 в атмосферу.

1.6. Влияние извержения вулканов на климат

По всему миру карту усеивают вулканы всех форм и размеров. Вдоль суши вокруг Тихого океана расположены хорошо известные вулканы Тихоокеанского огненного кольца. От Алеутских островов до гор Анд в Чили эти вулканы сформировали свою местную и региональную среду обитания.

По сути, вулканы представляют собой геологические объекты, которые выделяют магматический материал из-под поверхности Земли на поверхность, рис. 1.9. Магмы являются отправной точкой для создания вулкана. Образование магмы осуществляется несколькими способами:

1) субдукция океанической коры,

2) создание горячей точки из мантийного плюма,

3) расхождение океанических или континентальных плит.

В горячих точках океанической коры развиваются различные магматические системы, основанные на скоростях движения плит. Гавайи и архипелаг Мадейра (у западного побережья Африки) являются примерами вулканических комплексов.

Глобальное потепление или глобальное похолодание? - _7.jpg

Рис.1.9. Извержение вулкана

В то время как большинство вулканов выбрасывают некоторую смесь одних и тех же нескольких газов, выбросы каждого вулкана содержат разное соотношение этих газов. Водяной пар является преобладающей молекулой газа, образующейся, за ним следуют диоксид углерода (CO2) и диоксид серы (SO2). Выброс серы из вулканов оказывает огромное воздействие на окружающую среду, и это важно учитывать при изучении крупномасштабных последствий вулканизма. Вулканы являются основным источником серы (в форме SO2), которая попадает в стратосферу, где затем вступает в реакцию с радикалами OH с образованием серной кислоты (H2SO4). Молекулы серной кислоты конденсируются на существующих аэрозолях и могут стать достаточно большими, чтобы образовать ядра для дождевых капель и выпадать в осадок в виде кислотных дождей. Дождь, содержащий повышенные концентрации SO2, убивает растительность, что затем снижает способность биомассы района поглощать CO2 из воздуха. Это также создает неблагоприятную среду в ручьях, озерах и грунтовых водах. Повышенная концентрация серы в атмосфере может привести к разрушению озонового слоя и к ее потеплению.

Вулканы с кислым составом расплава производят чрезвычайно взрывоопасные извержения, которые могут выбрасывать огромное количество пыли и аэрозолей высоко в атмосферу. Эти выбросы твердых частиц являются мощными факторами, влияющими на климат, и могут спровоцировать самые разнообразные реакции, включая потепление, похолодание и подкисление дождевой воды. Реакция климата зависит от высоты пылевого облака, а также от размера и состава пыли. Некоторые вулканические силикаты очень быстро охлаждались, создавая стекловидную текстуру; их темный цвет и отражающая природа поглощают часть излучения и отражают остальное. Такой вулканический материал, впрыскиваемый в стратосферу, блокирует солнечное излучение, нагревая этот слой атмосферы и охлаждая область под ним. Характер ветра может распространять пыль по обширным географическим регионам; например, извержение вулкана Тамбора в Индонезии в 1815 году произвело так много пыли, что похолодание на 1 градус по Цельсию было отмечено даже в Новой Англии и продолжалось в течение нескольких месяцев. Европейцы и американцы назвали его эффект “годом без лета”.

6
{"b":"801165","o":1}