Интересно, что в названии РНКЗНИ и в названии Международной комиссии по защите от неионизирующего излучения (МКЗНИ, англ. International Commission on Non-Ionizing Radiation Protection, ICNIRP) также указывается на более узкую сферу деятельности, чем в действительности занимаются обе организации: защитой от неионизирующего ЭМП. Возможно, таким образом названия получаются более краткими и узнаваемыми. Кстати, большое число публикаций также содержит термин ЭМИ, хотя иногда из текста следует, что речь идет именно о ЭМП.
Весьма приближенно можно представлять простой синусоидальный волновой электромагнитный процесс в виде череды регулярно повторяющихся волн высокой скорости, равной скорости света. Одна из основных характеристик синусоидального волнового электромагнитного процесса – это его частота (или период, или длина волны). Частота – это показатель, который указывает число циклов (волн) синусоидального волнового процесса в единицу времени. Длина волны и частота тесно взаимосвязаны: чем выше частота, тем короче длина волны. Другие характеристики простого синусоидального волнового процесса: амплитуда и фаза.
Довольно часто говорится, что у электромагнитного сигнала есть начальная (нижняя) и конечная (верхняя) частота. Также можно сказать, что у сигнала есть центральная частота и полоса частот. Нужно иметь в виду, что в современных системах радиосвязи незначительная часть мощности сигнала может распространяться и вне полосы частот, а это может создать помехи для других систем и устройств.
Полезно знать, что практически любой сложный периодический электромагнитный сигнал можно представить в виде суммы простых синусоидальных волновых электромагнитных процессов с соответствующими частотами, амплитудами и фазами.
В книге рассматриваются в основном наиболее распространенные антропогенные неионизирующие ЭМП:
– низкочастотные электрические поля (1 Гц – 100 кГц)
– низкочастотные магнитные поля (1 Гц – 100 кГц)
– радиочастотные электромагнитные поля (100 кГц – 300 ГГц).
Такое разделение сделано в соответствии с рекомендациями МКЗНИ [1,2] по классификации ЭМП, и его можно считать оправданным.
Другое дело, что целью МКЗНИ является разработка рекомендаций по нормированию ЭМП, а вот здесь предлагаемые рекомендации МКЗНИ существенно отличаются от рекомендаций ВОЗ и ПАСЕ, хотя МКЗНИ официально сотрудничает с ВОЗ, Международной Организацией Труда и Европейской Комиссией. Как будет показано далее, отличие это настолько существенное, что из полного названия комиссии впору убрать предлог «от», при этом сокращенное название не изменилось бы, а смысл полного нового названия (Международная комиссия по защите неионизирующего излучения) стал бы соответствовать предлагаемым МКЗНИ уровням ЭМП.
Низкочастотные электрическое поле (ЭП) и магнитное поле (МП) в основном возбуждают в теле человека электрический ток, который может негативно влиять на здоровье. Радиочастотное ЭМП в основном нагревает тело человека, что может нанести вред здоровью. В диапазоне частот 100 кГц – 10 МГц, помимо нагревания, нужно учитывать возбуждаемый электрический ток.
Особое внимание уделяется МП крайне низкой частоты (КНЧ, англ. Extremely Low Frequency, ELF), потому что оно классифицировано ВОЗ как возможный канцероген [3]. Согласно ВОЗ, КНЧ – это частота из диапазона частот 3–300 Гц или даже из диапазона частот 3–3000 Гц. Именно диапазон частот 3–3000 Гц в дальнейшем тексте книги будет обозначаться КНЧ (ELF), когда речь пойдет о канцерогенности МП. В любом случае МП промышленной частоты 50 Гц является возможным канцерогеном. Необходимо подчеркнуть: важен именно частотный диапазон, а не его название, потому что можно встретить, например, такую классификацию:
Как видите, иногда название может ввести в заблуждение: можно сделать ложный вывод о том, что МП промышленной частоты 50 Гц не является возможным канцерогеном. С другой стороны, название СНЧ при поиске информации о канцерогенности МП может показаться бесполезным, тогда как МП именно этого диапазона частот также будут возможными канцерогенами.
Низкочастотное электрическое поле
Низкочастотное ЭП образуется при наличии заряда, величина которого изменяется со временем. Присутствие низкочастотного электрического тока не является необходимым условием для наличия низкочастотного ЭП. Например, около розетки с напряжением, которая предназначена для подключения электроприборов (220 В и 50 Гц), будет низкочастотное (50 Гц) ЭП даже в том случае, если электроприборы не подключены. Если есть розетка с постоянным напряжением, то около нее будет статическое ЭП.
Наиболее сильными являются низкочастотные ЭП в непосредственной близости от источников (розетки, линии электропередачи и так далее). По мере удаления от источника, сила ЭП быстро уменьшается. Сила ЭП характеризуется напряженностью (E) ЭП, которая измеряется в вольтах на метр (В/м). Низкочастотные ЭП влияют на распределение электрических зарядов на поверхности тела человека и вызывают наличие в организме электрических токов.
Проводящие поверхности, особенно заземленные, являются эффективной защитой от ЭП. Некоторые строительные материалы и деревья также обеспечивают защиту. Если линии электропередачи проложены под землей, то ЭП на поверхности будут очень слабыми.
Низкочастотное магнитное поле
МП возникают вокруг движущихся электрических зарядов, например, вокруг проводника с током. Если ток будет постоянным, то и МП будет статическим (0 Гц). Если же ток будет низкочастотным, то и МП будет низкочастотным (с той же частотой).
Магнит обладает статическим МП, но если магнит будет перемещаться относительно человека, то на человека будет воздействовать переменное МП, и в теле человека будут возбуждаться низкочастотные токи. Сила МП характеризуется напряженностью (H) МП, которая обычно измеряется в амперах на метр (А/м). Есть и другие характеристики МП, которые связаны с напряженностью МП. Так в этой книге будет использоваться термин индукция МП (магнитная индукция), которая часто измеряется в микротеслах (мкТл):
1 мкТл = 0,8 А/м = 0,001 мТл = 0,000001 Тл.
Везде, если это не оговаривается особо, при оценке ЭМП под воздушным пространством с ЭМП подразумевается вакуум с ЭМП.
В отличие от ЭП, МП возникают лишь при включении прибора в розетку и наличии тока. Чем больше электрический ток в какой-либо конкретной электропроводке, тем сильнее может быть МП.
Как и ЭП, МП наиболее сильны в непосредственной близости от их источника, а по мере удаления от него МП ослабевают. Обычные материалы, например, стены зданий, не являются препятствием для МП. Для защиты от низкочастотных МП не существует доступных и эффективных средств. МП возбуждают циркулирующие (круговые) электрические токи внутри организма. Они могут влиять на работу нервной и мышечной систем. Величина этих индуцированных токов зависит от величины внешнего МП.
Важным общим свойством низкочастотных ЭП и МП является то, что возбуждаемые ими токи в теле человека линейно растут с ростом частоты (примерно до частот порядка 1 кГц).
Радиочастотное электромагнитное поле
Радиочастотное ЭМП, называемое иногда высокочастотным ЭМП, возникает, например, в результате быстрого осциллирующего движения зарядов в антенне (наличия в антенне переменного тока высокой частоты).
Иногда диапазон частот от 300 МГц до 300 ГГц называется микроволновым, а иногда этот же диапазон называется сверхвысокочастотным. Можно также сказать, что полоса частот от 300 МГц до 300 ГГц – это диапазон сверхвысоких частот (СВЧ).
В принципе, подход для ЭМП любой частоты должен быть единым: если в антенне есть ток низкой частоты, то соответственно возникает низкочастотное ЭМП, а не высокочастотное ЭМП.