Рис. 2.4. Точки Лагранжа L1 – L5 в системе Солнце – Земля. Здесь изображено, по существу, то же самое, что на рис. 2.3, но для другой пары небесных тел. Луна на этом рисунке не играет никакой роли
Точка L3 в системе Солнце – Земля (см. рис. 2.4) не нашла себе практических применений (и правда, чего ради стоило бы тащиться в такую даль?), но оказалась богатой темой для фантастических нарративов разного рода; не счесть замышляющих что-то инопланетян или других заговорщиков, желающих там обосноваться. Впрочем, трудно оспорить высказывание, что если какая-то развитая цивилизация [существует и] имеет цель не просто присутствовать в Солнечной системе, но еще и пребывать на фиксированном расстоянии от Земли и если при этом они желают оставаться на своем корабле, не высаживаясь на поверхность, но не хотят тратить много топлива, – то лучшего места, чем лагранжевы точки, не найти. Но на меня производит, пожалуй, большее впечатление не предполагаемый галактический заговор, а тот факт, что к моменту начала космических полетов они (эти зеленые человечки), без сомнения, открыли бы все пять этих точек, уж не знаю, как они там у них называются.
Впрочем, мы еще не знаем, что такое точки L4 и L5, у нас открытые Лагранжем в дополнение к первым трем, известным Эйлеру. Определить их положение, когда ответ уже известен, легче легкого: измеряем расстояние от Солнца до Земли и воображаем равносторонний треугольник, одна из сторон которого как раз и соединяет Солнце и Землю (см. рис. 2.4). У равностороннего треугольника все стороны равны, поэтому расстояния от его третьей вершины до Солнца и до Земли одинаковы. Это важно! В этой вершине притяжение Солнца во столько раз сильнее, чем притяжение Земли, во сколько раз Солнце массивнее. А дальше следует несложное упражнение в геометрии: две такие силы притяжения складываются так, что в итоге тело в точке L4 испытывает суммарную силу, направленную в точности к центру масс системы Солнце – Земля, а по величине эта сила ровно такая, чтобы поддерживать обращение вокруг этого центра масс на заданном расстоянии – на том самом, которое определяется из нашего треугольника. С точкой L5 все то же самое, только если L4 опережает Землю в ее движении вокруг Солнца, то L5 отстает. Обе – на один и тот же угол в 60°.
Точки Лагранжа – это некеплеровы орбиты
Итог про точки Лагранжа: это такие положения в системе двух тел, где совместное притяжение этих тел способно поддерживать синхронное обращение малого третьего тела. Это ответ на заданный выше вопрос, но слово «точка», как мы видим, понимается тут несколько вольно: каждая из точек Лагранжа вообще-то задает орбиту, потому что вся картинка на рис. 2.4 вращается как единое целое; это буквально точка только для наблюдателя, который сам обращается вокруг общего центра масс – скажем, сидя на Земле, если мы говорим о системе Солнце – Земля. И еще я забыл сказать, что вся схема работает хорошо, когда орбиты в системе двух тел близки к круговым. И конечно, помещать на эти орбиты следует тела малой массы; такое условие означает, что притяжение этого третьего тела не должно оказывать обратного воздействия на два больших тела (Солнце и Землю в данном случае). И наконец, пояснения требует слово «поместить»: все тела, помещенные в какую-либо точку Лагранжа, должны быть разогнаны до необходимой скорости для движения по орбите, которую описывает выбранная точка Лагранжа, когда конфигурация, изображенная рис. 2.4, вращается как целое. Этого разгона совместное тяготение двух больших тел совсем никак не обеспечивает – но оно обеспечивает ровно такое притяжение к центру вращения, при котором тела, получившие подходящую скорость, могут оставаться на этой орбите.
*****
Гало-орбиты. Идея высадиться на обратной стороне Луне в начале 1970-х реализована не была, Сернан и Шмитт прилунились на «Аполлоне-17» на видимой стороне Луны и три дня ездили там на ровере; но китайский аппарат «Чанъэ-4», который в самом начале 2019 г. доставил луноход «Юйту-2» на обратную сторону Луны (рис. 2.5), вел связь через спутник «Цюэцяо», заблаговременно отправленный к той самой точке L2 системы Земля – Луна, в каких-то 64 500 км за Луной. Здесь наконец пора дать обещанное уточнение про ретрансляционный спутник. Каждый раз, когда мы слышим про космический аппарат «в точке Лагранжа», надо представлять себе что-то вроде орбиты вокруг точки Лагранжа.
Рис. 2.5. Луноход «Юйту-2» на обратной стороне Луны. И его, и Землю постоянно видит ретрансляционный спутник, находящийся вблизи точки Лагранжа L2 системы Земля – Луна
Дело в том, что с точками Лагранжа все-таки есть проблема: L1, L2 и L3 неустойчивы[30]. Карандаш может некоторое время стоять вертикально на вашем столе, но рано или поздно упадет по той или иной причине, например если вы откроете окно или из-за какой-то еще флуктуации. Для космического аппарата, помещенного в точку Лагранжа, причин для подобных флуктуаций – нарушений точного баланса положения, скорости и сил притяжения – хоть отбавляй (притяжение других тел в Солнечной системе оказывает воздействие, орбиты отличаются от круговых, скорость оказывается не идеально точной для пребывания в точке Лагранжа и т. д.). В результате аппарат начинает «сползать» – удаляться от математически определенной точки Лагранжа. Хотя события и будут развиваться намного медленнее, чем при опрокидывании карандаша, неустойчивость означает, что по мере сползания на космический аппарат действуют силы, уводящие его только дальше[31]. Поэтому начавшееся по любой причине сползание не исправится само; если там оказался астероид, то он со временем сдвинется куда-то прочь, а если мы (или инопланетяне) желаем, чтобы там оставалось какое-то устройство, то потребуются включения корректирующего двигателя. Да, некоторое количество топлива тратится, но очень небольшое – именно из-за того, что дело происходит вблизи точки равновесия с достаточно вяло проявляющей себя неустойчивостью. Космический аппарат, который время от времени заботится о своем положении, может поэтому описывать вокруг точки Лагранжа что-то вроде орбиты, но это орбита не в кеплеровском смысле, поскольку в сторону самой точки Лагранжа нет силы притяжения, а скорее контролируемый дрейф – сначала сползание в одну сторону, затем короткое включение двигателя для изменения направления движения, последующее сползание в несколько иную сторону и так далее. Китайский ретрансляционный спутник летал вокруг L2 по такой орбите, чтобы Луна не загораживала ему вид на Землю. При взгляде с Земли эта орбита проходит снаружи от лунного диска, нигде не заходя за него, – как «гало» вокруг Луны. Поэтому такие орбиты иногда называют гало-орбитами.
Вариация на тему гало-орбит предполагается и для Лунной орбитальной платформы (Lunar Gateway) – международной космической станции «вблизи» Луны, создание которой планируется при ведущей роли NASA. Станция должна находиться на вытянутой гало-орбите, «чувствительной» к наличию обеих точек Лагранжа L1 и L2, с максимальным приближением к поверхности Луны на 3000 км (что несколько меньше диаметра Луны) и максимальным удалением 70 000 км. Станция будет приближаться к Луне над ее северным полюсом, а уходить далеко – над южным, что на взгляд с Земли можно изображать как под южным: орбита «свисает вниз», почти перпендикулярно плоскости, в которой сама Луна обращается вокруг Земли, и уходя сильно ниже этой плоскости. Это одна из южных орбит в отношении Луны, южный полюс которой тоже «смотрит вниз», и в течение почти всего времени, за исключением коротких периодов прохода над северным полюсом, станция будет находиться в прямой (радио)видимости от предполагаемого места высадки на Луну вблизи ее южного полюса. Для периодических «исправлений» орбиты потребуются включения двигателя, сообщающие станции суммарное изменение скорости всего на 10 м/с за год.