Элементарное вовсе не означает легкое для понимания. Элементарное означает, что для понимания не требуется почти никаких предварительных знаний, кроме бесконечно развитых умственных способностей.
Две «разные» параболы. Параболы оказались ответами в двух задачах: «планета» (частный случай движения вокруг центра притяжения, скажем Солнца) и «стрела», или, выразительнее, «камень» (движение, начинающееся под углом к горизонту вблизи земной поверхности). Одна и та же математическая кривая вполне может оказаться решением уравнений, записанных для различных систем, при разных предположениях. В задаче «планета» предполагается, что сила притяжения убывает при увеличении расстояния – «обратные квадраты», как это записано в (1.1). Парабола может тогда получиться в качестве решения при тщательно подобранных начальных условиях. В задаче «камень» предполагается другое: вблизи земной поверхности сила притяжения практически постоянна; поэтому можно спокойно пренебречь тем, как она убывает по мере подъема над поверхностью. В такой постановке задачи траектория брошенного тела – всегда парабола (разумеется, если убрать весь воздух – например, перенести эксперимент на Луну и там от души пострелять из рогатки), за очевидным исключением случаев бросания строго вверх и строго вниз. Если все же проявить дотошность и решить задачу про камень, не забывая, что притяжение ослабевает с высотой (и меняет направление по мере смещения вдоль земной поверхности!), то траектория от старта до падения окажется частью очень вытянутого эллипса – очень коротким отрезком его дуги вблизи его верхней части. На рис. 1.8 изображена часть эллипса, вытянутого несравненно слабее, чем тот, на который можно запустить камень любыми подручными средствами, но рисунок передает идею: небольшая дуга эллипса практически совпадает с параболой. Траекторией является только та часть каждой кривой, которая находится над поверхностью Земли, и, пока максимальная высота подъема мала по сравнению с радиусом планеты, участок эллипса неотличим от параболы. Поэтому вблизи поверхности Земли можно считать, что брошенные под углом к горизонту тела летят по параболе. Это Галилей и установил.

Рис. 1.8. Часть эллипса (светло-серая линия) и часть параболы (темно-серая линия), которые неразличимо близки около вершины. Широкой линией показана поверхность Земли. Только участки кривых, которые лежат выше нее, могут быть траекториями брошенных тел, а в этой части эллипсы очень похожи на параболы, пока они достаточно близки к поверхности
Точная парабола возникает в задаче о стрельбе с поверхности Земли, когда притяжение Земли учитывается «по-настоящему», в соответствии с законом тяготения Ньютона, а скорость имеет строго определенное значение. Если вы стреляете из суперпушки, расположенной на поверхности, то при достаточной скорости снаряда, посланного под углом к горизонту, он отправится путешествовать вокруг Земли, описывая эллипс. Если скорость выстрела еще увеличить, то наступит момент, когда снаряд уйдет от Земли неопределенно далеко. Минимальную скорость, при которой это происходит, называют второй космической скоростью или параболической скоростью. Это минимальная скорость освобождения: та скорость, которую необходимо придать телу, чтобы оно преодолело гравитацию, например, Земли и улетело «совсем». Движение тогда происходит по параболе! (Разумеется, если запустить снаряд быстрее, то он тем более улетит от Земли – но уже не по параболе, а по гиперболе.)
Парабола – траектория самого неторопливого расставания
Гравитация и заряды. Царица Вселенной – гравитация – это самая слабая из четырех фундаментальных сил. И одна из двух дальнодействующих. Вторая дальнодействующая – электромагнетизм, и, чтобы оценить, во сколько раз одна сильнее или слабее другой, можно сравнить силу, с которой два расположенных на определенном расстоянии электрона отталкивают друг друга электрически, и силу, с которой они притягиваются гравитационно. Гравитационное притяжение слабее электрического отталкивания примерно в 4 100 000 000 000 000 000 000 000 000 000 000 000 000 000 раз. Это большое число раз, независимо от вашего определения слова «много». Намеки на эту огромную разницу повсюду вокруг нас: когда я держу в руках груз весом 10 кг, сила химических связей между молекулами в моем теле (которые в основе своей электромагнитные, но в заметно «ослабленном» варианте по сравнению с взаимодействием одиночных электрических зарядов) позволяет мне с успехом противодействовать притяжению целой планеты. И тем не менее на больших масштабах Вселенную структурирует гравитация, а вовсе не электромагнетизм, за которым остался весь мир сред, материалов и вещей вокруг нас. Причина в том, что электрические заряды встречаются в двух разных видах: положительные и отрицательные, и в зависимости от этого они могут и притягиваться, и отталкиваться. Положительные и отрицательные заряды распределены вокруг нас поровну, так что окружающие тела в целом электрически нейтральны, т. е. не имеют электрического заряда (хотя глубоко внутри с зарядами происходит много интересного). Ничего похожего не происходит с гравитационными зарядами – т. е. массами – окружающих тел: при всей слабости гравитации тела заведомо не являются гравитационно нейтральными.
Телескоп «Кеплер». «Кеплер» занимался поиском случаев периодического ослабления света от звезды из-за прохождения планеты по ее диску, наблюдаемому с Земли, – что-то вроде крошечной, микроскопической пылинки на фоне прожектора. Это наш основной источник знаний об экзопланетах на данный момент, хотя такой метод их поиска и имеет некоторый перекос: чаще открываются более близкие к своей звезде планеты, чем далекие, потому что при небольшом наклоне плоскости орбиты планеты к лучу зрения близкая к своей звезде планета скорее окажется на фоне диска этой звезды, чем далекая (а перекос хорошо осознается, и разрабатываются меры по его преодолению для оценки планетного «населения» в галактике Млечный Путь).
Телескоп «Кеплер» работал не на околоземной орбите, а летал (и сейчас летает, только срок службы уже закончился) вокруг Солнца, близко к земной орбите и собственно к Земле, но несколько отставая от нее. Его пришлось убрать подальше, чтобы избежать ненужных затмений части неба близкой Землей, влияния света, отражаемого от Земли, а также влияния лунной гравитации на его орбиту (из-за обращения Луны вокруг Земли – влияния переменного, что и составляет проблему). Оборот вокруг Солнца «Кеплер» совершает за 372,5 суток, что означает отставание от Земли на 26 млн километров за год. Через примерно 25 лет «Кеплер» окажется с противоположной стороны от Солнца по отношению к Земле, а лет через 50 снова приблизится к нам. Быть может, тогда будет не очень дорого снять его с орбиты и поставить в музей.
Признания и литературные комментарии
Количество движения (в простейшем случае – произведение массы на скорость) имеет и более короткое название – «импульс», и этот термин можно было бы выучить и использовать, но я предпочел вариант, звучащий несколько более значаще. Для системы, на которую ничто не действует извне, суммарное количество движения всех ее частей – сохраняющаяся (не меняющаяся с течением времени) величина. В эквивалентной форме этот факт известен как самый, наверное, популярный – третий – закон Ньютона, на котором я не стал специально останавливаться (но о законах сохранения сказано еще немного в приложении Б).
Высказывание Эйнштейна о Кеплере взято из статьи "Albert Einstein über Kepler", впервые напечатанной в газете Frankfurter Zeitung в ноябре 1930 г.; русский перевод под названием «Иоганн Кеплер» включен в сборник статей Эйнштейна [42]. Там же – его статья «Механика Ньютона и ее влияние на формирование теоретической физики», написанная к 200-летию кончины Ньютона, из которой я также привожу цитату. Разнообразные подробности о жизни и трудах Тихо Браге, Кеплера, Галилея и Ньютона (и не только их) можно найти в энциклопедической книге [19]. Труды и жизнь Галилея в период его противостояния с инквизицией, представленные на фоне эпохи, интриг и растущего научного знания, – предмет захватывающего чтения в [13]. На Дейва Скотта, бросающего предметы на Луне, можно посмотреть по ссылке https://youtu.be/Oo8TaPVsn9Y. Цитата из самого Галилея взята из издания [8].