Литмир - Электронная Библиотека
A
A
Язык и мозг. Нейробиология раскрывает главную тайну человека - _4.jpg

Рис. 5 Строение нейрона. (Автор: ЮкатанDhp1080 (original) – Этот файл является производной работой от: Neuron.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27219745)

Тело нейрона в разрезе напоминает овал, звёздочку, многоугольник или пирамиду. Его размер может быть от 3 до 130 микрометров. Для сравнения толщина человеческого волоса – от 40 до 120 мкм. Обычно нейрон имеет два вида отростков – много коротких и один длинный. Сантьяго Рамон-и-Кахаль в юности мечтал стать художником. Он зарисовывал то, что видел под микроскопом. Возможно, как раз это и помогло ему разглядеть отдельные нейроны, а также их отростки там, где никто их не увидел. Он также заметил, что отростки смотрят в разные стороны. Короткие – наружу и в стороны, а длинные – внутрь мозга. Короткие – это дендриты. Их название происходит от греческого слова dendron – дерево. Как антенны они принимают информацию. Длинные отростки – аксоны – передают её на дальние расстояния. Они могут вырастать до одного метра.

Информация в мозге передаётся электрохимическим путём. Как это работает? Дендриты принимают электрический заряд и отправляют его в вычислительный центр – тело нейрона. Оно решает, какой именно из принятых сигналов пойдёт дальше, а какой нет.

Электрические сигналы бывают как возбуждающими – вызывающие действие, так и тормозными – останавливающие действие. Это зависит от химических веществ, которые один нейрон выбрасывает в синапс – щель между нейронами размером 20–50 нанометров, а другой его ловит своими рецепторами. Сигнал от одной клетки слишком слаб, чтобы вызвать какую-то реакцию в соседе. Одновременно должны загореться 50 или более синапсов. Тело клетки высчитывает, сколько тормозных и возбуждающих сигналов пришли одновременно и откуда. Если количество возбуждающих сигналов превышает количество тормозных, то через аксон проходит команда: Сделай это! Если наоборот: Остановись!

В коре преобладают два основных вида нервных клеток – звёздочки без шипиков и пирамидки с шипиками. Шипики – крошечные мешочки, наросшие на дендритах. Информация зашифрована в спайках – так нейроученые на своём жаргоне называют электрические импульсы. Звёздочки загораются с постоянной частотой. Пирамидки сначала дают быстрый всплеск, потом он замедляется. Ещё возможен ответ быстрыми всплесками, потом пауза, затем снова всплеск[9].

Язык и мозг. Нейробиология раскрывает главную тайну человека - _5.jpg
Язык и мозг. Нейробиология раскрывает главную тайну человека - _6.jpg
Язык и мозг. Нейробиология раскрывает главную тайну человека - _7.jpg

Рис. 6 Различные виды спайков нейронов. (Автор: А.Петрова)

Сколько нейронов в мозге

Поиск ответа на этот вопрос в учебниках по нейробиологии даёт разные цифры. Обычная цифра – 100 миллиардов нейронов, и в 10 раз больше глиальных клеток – обслуживающего персонала нейронов. 1:10. Бразильская исследовательница Сюзанна Геркулано-Гаузель (Suzana Herculano‐Houzel) не поверила и решила узнать точное число. Она перечитала массу учебников, встретилась с известными нейробиологами. Все повторяли как мантру число 100 миллиардов, но никто не мог сказать, откуда взялась эта цифра. Тогда Геркулано-Гаузель решила посчитать нейроны сама. Она разработала новый метод и назвала его brain soup – суп из мозга. Но прежде чем перейти к опытам с мозгом человека, она потренировалась на крысиных мозгах.

В 2009 году Геркулано-Гаузель взяла мозг четырех умерших людей. Она разделила его на части – кора, мозжечок и другие, затем нарезала их кружочками. Потом растёрла их в порошок и развела в специальном растворе, чтобы удалить жиры. В растворе остались только ядра нейронов и глиальных клеток. Затем исследовательница пометила их флуоресцентным протеином. В ультрафиолетовых лучах они светились голубым. Одно ядро – одна клетка. Чтобы определить, сколько из них нейронов, Сюзанна использовала два антитела, которые приклеиваются только к нейронным ядрам и окрашивают их в красный цвет. С помощью микроскопа она посчитала сначала голубые ядра, а затем красные. Результат – в мозге 170 миллиардов клеток, из них 86 миллиардов нейронов и 86 миллиардов глиальных клеток. Соотношение один к одному. Но не для всех частей мозга. В коре – верхнем слое мозга, самом богатом нейронами, – почти 61 миллиард глиальных клеток и 16 миллиардов нейронов – 3,76: 1[10].

Критики упрекали Сюзанну Геркулано-Гаузель в том, что растирание в порошок и растворение разрушило много клеток. Но она использовала раствор, который разрушает жиры и сохраняет протеины, из которых состоят ядра клеток.

Законы мозга

Нейроны, которые расположены рядом, обрабатывают один тип информации – визуальную, слуховую, двигательную. Учёные называют такие зоны соответственно зрительной, слуховой или двигательной корой. Информация из разных типов коры может смешиваться, неважно, находятся они по соседству или далеко друг от друга. Когда мы видим розу и сразу слышим слово роза, в этот момент одновременно загораются нейроны в зрительной и слуховой коре, их отростки притягиваются друг к другу. Чем чаще происходит совместное зажигание, тем сильнее связь между нейронами. Сюда же могут подключиться «нюхающие» нейроны. Это закон Хэбба, который лежит в основе обучения. Fire together, wire together! По этому принципу нейроны объединяются в нейронные ансамбли – большие группы. При виде котика загораются нейроны в вашей зрительной коре, одновременно с ними нейроны, которые кодируют как представление о котиках, так и само слово котик. Если вы любите котиков, то к ним добавляются нейроны из эмоционального центра, а также нейроны запаха и мягкой кошачьей шёрстки. Нейронные ансамбли собираются как конструкторы Лего из жизненного опыта. Люди рождаются с небольшим набором нейронных ансамблей, но все остальные – результат обучения в широком смысле слова. Закон Хэбба работает и в обратном направлении – Use it or lose it! Неиспользуемые ансамбли распадаются. Информация стирается из мозга.

Собака Павлова, слыша звонок, понимает, что скоро обед, и выделяет слюну. Так работает ассоциативное обучение или условный рефлекс. Считается, что язык дети выучивают таким же образом. Но тут есть одна проблема. Допустим, малыш слышит слово мяч и видит сам мяч. Зрительные нейроны связались со слуховыми. Но в жизни часто бывает так, что со словом мяч в речи одновременно может появиться ещё много слов. Например: «Посмотри, какой чудесный мяч несёт этот мальчик!». Добавим сюда ещё жест рукой, мимику и так далее. По закону Хэбба всё это должно связаться в один крепкий ансамбль. Ну и как ребёнок должен из всего этого понять, к чему относится слово мяч? Профессор Ф. Пульвермюллер, руководитель лаборатории в Свободном университете Берлина, объясняет это законом анти-Хэбба, который развязывает ненужные связи[11]. Укрепляются только постоянно повторяющиеся связи. Ребёнок должен несколько раз в разном контексте услышать слово мяч, чтобы выучить его.

Фридеман Пульвермюллер (Friedemann Pulvermüller) – доктор наук, профессор Свободного университета Берлина, руководитель лаборатории Мозга и языка (Brain Language Laboratory). Его интересуют нейробиологические основы языка. Профессор Пульвермюллер разработал модель обработки языка, в центре внимания которой находятся нейроны – Action perception theory. Модель выявляет нейронные сети, которые обрабатывают слова, грамматические правила, функции слов и языковых конструкций в контекстах. Профессор Пульвермюллер разрабатывает новые методы языковой терапии после инсульта. 12 лет он руководил программой в области когнитивной нейронауки языка в отделении медицинских исследований и наук о мозге (the Medical Research Cognition and Brain Sciences Unit) в Кембридже (Великобритания)[12].

вернуться

9

Bear M.F., Connors B.W., Paradiso M.A. (2009). Neurowissenschaften: ein grundlegendes Lehrbuch für Biologie, Medizin und Psychologie. Heidelberg: Spektrum Akad. Verl. 980 S. – S. 107–110.

вернуться

10

Azevedo F.A.C., Carvalho L.R.B., Grinberg L.T., Farfel J.M., Ferretti R.E.L., Leite R.E.P… Herculano-Houzel S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5), 532–541. https://doi.org/10.1002/cne.21974

вернуться

11

Pulvermüler F. (2018). Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology. Elsevier Ltd. https://doi.org/10.1016/j.pneurobio.2017.07.001

5
{"b":"780260","o":1}