1.2 Пространственная ориентировка – фундаментальная проблема высокоманевренного полета
В ХХI в. авиация приобретет новое качество – сверхманевренность для достижения господства в воздухе. Сверхманевренность означает энергичный маневр на неустановившихся режимах, с дефицитом времени для применения спецсредств. Сверхманевренность сопряжена с воздействием длительных, с высоким градиентом нарастания динамических перегрузок при выходе самолета на закритические углы атаки. Что же касается факторов угрозы дезориентации, то они для подобного рода полетов почти не изучены. Это обусловлено тем, что появилась возможность непосредственного управления боковой и подъемной силами, вектором тяги двигателя. По сути, речь идет о возможности раздельного управления угловым и траекторным движением (раздельное управление векторами перегрузок и собственной угловой скорости ЛА). При пилотировании на углах атаки более 90° и скольжения следует ожидать массу сюрпризов в виде особого рода иллюзий и дезориентаций. Кстати, не последнюю роль будет играть и суженное пространство, на котором разворачивается дуэльная ситуация (4х6 км). За этим ведь следует резкое увеличение скоростей относительно углового перемещения объекта наблюдения. Угловое перемещение напрямую связано с работой зрительно‐вестибулярного аппарата человека, ухудшение работы которого затруднит главную задачу – визирование. Таким образом, даже из этих частных моментов на содержание понятия «сверхманевренности» следует, что угловые скорости, радиус разворота, динамическое торможение и ряд других особенностей пилотирования потребуют глубоких научных исследований в области пространственной ориентировки. И не исключено, что от их результатов будет зависеть перспективность и целесообразность долгосрочного планирования суперманевренных самолетов.
Прорыв в области аэродинамических характеристик ЛА вызвал к жизни принципиально новые требования к системам отображения информации.
Нарушения пространственной ориентировки (дезориентация) связаны с иллюзорным восприятием пространства. Возникновение иллюзий, как правило, сопровождается осознанием противоречий умственных представлений о пространственном положении, основанных на оценке приборной информации и образа восприятия положения самолета.
В истории исследований пространственной ориентировки летчика в приборном полете можно выделить несколько теоретических направлений. Для первого направления характерны попытки разработать теорию слепого полета на основании предполагаемой возможности ориентироваться в полете в пространстве с помощью вестибулярных и проприоцептивных ощущений.
В экспериментах в условиях лишения летчика зрительной информации путем закрытия фонаря и приборной доски непрозрачными шторками определялось время, за которое крен самолета достигал 30°, а вертикальная скорость – 15 м/с, оно равнялось 30 с [18, 73].
В дальнейшем наибольшее распространение получили взгляды на пространственную ориентировку летчика как на результат системной работы анализаторов. При этом стержнем всей ориентировки является направление силы тяжести. Основную сигнальную роль в определении направления силы тяжести играют вестибулярный и кинестетический анализаторы, что выражается в рефлексах с вестибулярного аппарата на мышцы глазных яблок, позных рефлексах и т. п. Отсюда закономерность (физиологическая норма) появления психологического конфликта между «чувствую» и «знаю». В полете перегрузка вследствие действия аэродинамических сил подменяет направление силы тяжести. Отсюда вывод – возникновение иллюзий в полете связано с действием ускорений, в связи с чем последние нужно рассматривать как вредные для ориентирования. Следовательно, не должно быть никакого доверия своим ощущениям, верить можно только показаниям приборов [40, 41, 42].
Понимание происхождения иллюзий сыграло свою положительную роль. Однако такие представления были неполными. Их ограниченность выражалась в недооценке роли психики в деятельности летчика.
Третье направление осуществляло переход к исследованиям пространственной ориентировки летчика на основе психологических концепций.
В 1950‐е годы ученые пришли к выводу, что летчик в полете по приборам должен обобщать показания приборов и на этой основе создавать психически целостный образ пространственного положения самолета и реагировать не на изменение показаний приборов, а на изменение своего пространственного положения [61, 62, 72].
В 1970‐е годы на основе идеи об образном содержании психической регуляции деятельности была разработана концепция образа полета. Н.Д. Завалова [23] сформулировала новую концепцию: в приборном полете основная сложность деятельности летчика по пилотированию самолета заключается в том, что она включает в себя два самостоятельных совмещающих действия: 1) ведение пространственной ориентировки и 2) процесс пилотирования – выдерживание необходимых параметров полета. Пространственная ориентировка регулируется образом пространственного положения – представлением о положении и перемещении самолета в трехмерном пространстве относительно земли. Оба действия требуют активного участия сознания и должны протекать одновременно.
Подход к пространственной ориентировке как к функции образа пространственного положения дает возможность в ином свете представить возникновение иллюзий и пространственной дезориентации и по‐иному оценить роль ощущений летчика в приборном полете.
Предметное содержание представленного в сознании образа пространственного положения не обусловлено фатально деятельностью анализаторов, а определяется активным произвольным управлением своими ощущениями. При этом, по нашему мнению, адаптация к ощущениям от вестибулярного и проприоцептивного анализаторов заключается не в том, что они должны игнорироваться или затормаживаться, а в том, что они под контролем сознания должны произвольно включаться в создаваемый на основе показаний приборов умственный образ пространственного положения. В специальных летных экспериментах мы доказали, что четкое осознание тактильных, проприоцептивных и вестибулярных ощущений и их сознательное включение в психическую регуляцию деятельности летчика по пилотированию самолета под контролем показаний приборов не только помогают в пилотировании, но и уменьшают вероятность возникновения иллюзий [64].
В пользу роли «включения ощущений» говорят полученные данные о том, что одни лишь интеллектуальные усилия очень редко выводили испытуемых из экспериментально вызванных иллюзий, для чего необходимы были правильные тактильные и зрительные восприятия. В механизме формирования у летчика пространственного положения при ведении пространственной ориентировки в приборном полете можно выделить две фазы. В первой фазе происходит активное сознательное построение умственной схемы пространственных координат самолета в полете на основе зрительных восприятий показаний приборов. Такая схема является базой для правильной интерпретации ощущений и представляет собой установку на формирование образа. Во второй фазе происходит включение вестибулярных, проприоцеп-тивных, тактильных и других ощущений в умственный образ пространственного положения.
Необходимо особо отметить, что как формирование самой установки, так и произвольное включение ощущений в формирующийся образ происходит с помощью специальных умственных действий. Умению формировать образ пространственного положения нужно целенаправленно обучать.
Для проверки высказанной гипотезы были проведены специальные эксперименты, направленные на формирование установки к произвольному включению в умственный пространственный образ акселерационных, проприоцептивных и иных ощущений. По содержанию это был формирующий эксперимент [12].
Доказательством продуктивности теоретических идей служат результаты исследований специальной серии экспериментов, посвященной изучению генезиса иллюзий пространственного положения. Суть его состояла в том, что в реальном полете опытным профессионалам ставилась задача определить свое пространственное положение в трех экспериментальных ситуациях. Эти ситуации в полете создавались экспериментатором в виде отклонений от заданного режима, который испытуемый должен был определить по чувству (без зрительного контроля). Ситуации I типа характеризовались тем, что летчик‐экспериментатор для сохранения установившегося режима отклонял рули с амплитудой больше 1 см, что сопровождалось сверхпороговыми изменениями перегрузки с градиентом 0,15–0,5 ед/с. В ситуациях II типа летчик совершал незначительные (до 1 см) движения рулей, вызывавшие околопороговые изменения перегрузки с градиентом 0,1 ед/с и менее. Ситуации III типа характеризовались отсутствием движений рулями и практически неизмененной перегрузкой.