Широкое распространение имела в древности двенад-цатеричная система счисления. Происхождение ее тоже связано со счетом на пальцах. А именно, так как четыре пальца руки (кроме большого) имеют в совокупности 12 фаланг, то по этим фалангам, перебирая их по очереди большим пальцем, и ведут счет от 1 до 12. Затем 12 принимают за единицу следующего разряда. Основное преимущество двенадцатеричной системы состоит в том, что ее основание делится без остатка на 2, 3 и 4. Сторонники двенадцатеричной системы появились еще в XVI веке. В более позднее время к их числу принадлежали столь выдающиеся люди, как Герберт Спенсер, Джон Квинси Адамс и Джордж Бернард Шоу. Существует даже американское двенадцатеричное общество, выпускающее два периодических издания: «Двенадцатеричный бюллетень» и «Руководство по двенадцатеричной системе». Всей «двенадцатеричников» общество снабжает специальной счетной линейкой, в которой в качестве основания используется 12.
В устной речи остатки двенадцатеричной системы сохранились и до наших дней: вместо того, чтобы сказать «двенадцать», часть говорят «дюжина». Сохранился обычай считать многие предметы не десятками, а именно дюжинами, например, столовые приборы в сервизе (сервиз на 12 персон) или стулья в мебельном гарнитуре.
Математика в военно-морской практике
Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений. Но в этой книге нас больше всего будет интересовать практическое применение математики именно в морском деле. Интересно, что о применении математики в судостроении древних культурных народов почти не сохранилось никаких данных. Знаний, по которым инженер мог бы составить ясное представление о судах, их устройстве, способах их проектирования и постройки, длительное время просто не существовало. Рассказы некоторых историков по большей части свидетельствуют об их технической безграмотности и легковерии. Между тем начало судостроения восходит задолго до всякой письменности и всякой истории. Чертежей тогда, по-видимому, не было, или они изготовлялись на покрытых воском дощечках или временных деревянных помостах вроде тех, которыми и теперь пользуются кустари при постройке речных барж; ясно, что от этого ничего не сохранилось, да и не могло сохраниться.
Здесь, видимо, все шло преимущественно чисто практически, передаваясь от отца к сыну, от мастера к ученику, а не как наука. Даже основной закон о равновесии плавающих тел, разработанный Архимедом за 250 лет до нашей эры, был впервые применен к делу судостроения лишь в 1660-х годах Антонием Дином в Англии, когда в ней уже был Ньютон, математический гений которого почитается одинаково с гением Архимеда. А первые руководства по «Теории корабля» появились только в 1740-х годах. В них впервые было установлено учение об остойчивости корабля. В начале 1800-х годов, по почину английских судостроителей Сеппингса и Саймондса, была усвоена польза и необходимость диагональных связей, придававших крепость и неизменяемость судовому борту; теория этого дела была обоснована физиком Юнгом.
В 1840-х годах началась постройка железных паровых судов; она стала быстро развиваться, но здесь довольно долгое время (около 30 лет) шли ощупью и сохраняли не только ненужное, но даже вредное наследие деревянного судостроения, вроде толстого, на ребро поставленного полосового киля. Лишь в 1870 году Рид дал до сих пор сохранившиеся практические приемы вычисления остойчивости корабля набольших наклонениях и расчеты напряжений, возникающих в связях корабля на волнении. Сталь в судостроении введена с начала 1800-х годов.
Уже в наше время, в годы войны, – 1941–1945 – видную роль сыграли математики Московского университета. Существенное значение для решения некоторых практических задач имело развитие в Московском университете одного из разделов математики, изучающей теорию и способы построения особых чертежей-номограмм. Номограммы позволяют значительно экономить время вычислений, максимально упрощают расчеты ряда задач. Работу специального номографического бюро при Научно-исследовательском институте математики МГУ возглавлял известный советский геометр Н. А. Глаголев. Номограммы, подготовленные в этом бюро, применялись в военно-морском флоте, зенитной артиллерии, оборонявшей советские города от налетов вражеской авиации.
Выдающийся математик Алексей Николаевич Крылов создал таблицу непотопляемости, по которой можно было рассчитать, как повлияет на корабльзатоплениетех или иных отсеков; какие номера отсеков нужно затопить, чтобы ликвидировать крен, и насколько это затопление может улучшить устойчивость корабля. Использование этих таблиц спасло жизнь многим людям, помогло сберечь огромные материальные ценности. Специальные бригады ученых-математиков занимались только расчетами. Сложнейшие задачи решались лишь с помощью логарифмических линеек и арифмометра.
Работая в области теории вероятностей, наши ученые-математики определили размеры каравана судов и частоту их отправления, при которых потери были бы наименьшими. В осажденном Ленинграде великий математик Яков Исидорович Перельман прочитал десятки лекций воинам-разведчикам Ленинградского фронта, Балтийского флота и партизанам о способах ориентирования на местности без приборов.
Научные разработки учёных-математиков сыграли большую роль в победе над фашизмом, а именно:
• А.А. Ляпунову принадлежит разработка математической теории управляющих (кибернетических) систем. Он создал первые учебные курсы программирования и разработал операторный метод – по существу первый язык программирования, отличающийся от языка систем команд ЭВМ и разработанный до появления алгоритмических языков типа АЛГОЛ, и другие.
• Юрий Владимирович Линник (1915–1972) и Анатолий Петрович Александров (1903–1994) разработали «Метод защиты кораблей от магнитных мин». Перед началом Великой Отечественной войны они совместно с И.В. Курчатовым и В.М. Тучкевичем, разработали метод защиты кораблей от магнитных мин путем размагничивания кораблей, получивший название «система ЛФТИ». Корабли, оснащенные такими системами, проходя над миной, не вызывали срабатывания её магнитного взрывателя.
• В апреле 1942 года коллектив математиков под руководством академика С. Бернштейна разработал и вычислил таблицы для определения местонахождения судна по радиопеленгам.
• В 1938 г. Б. В. Булгаков разработал фундаментальные основы теории инерциальных систем навигации. Указал, что при маневрировании объекта стабилизированная площадка будет иметь девиации.
• Я.Н. Ройненберг разработал методы компенсации баллистических девиаций гироскопических приборов, возникающих вследствие маневрирования корабля. Была разработана теория силовых гироскопических стабилизаторов.
• В работах А.Ю. Ишлинского была развита теория гироскопических приборов и устройств как систем взаимосвязанных твёрдых тел с учётом их конструктивных и технических особенностей.
• Андрей Николаевич Колмогоров (1903–1987) и Николай Гурьевич Четаев (1902–1959) разработали «Теорию стрельбы».
Отдельно нужно сказать о статистике в военном деле. Имеется аспект работы советских математиков на помощь фронту, о котором нельзя умалчивать – это работа по организации производственного процесса, направленная на повышение производительности труда и на улучшение качества продукции. Здесь специалисты столкнулись с огромным числом проблем, которые по самому их существу нуждались в математических методах и в усилиях математиков.
Затронем здесь лишь одну проблему, получившую наименование контроля качества массовой промышленной продукции и управления качеством в процессе производства. Эта проблема со всей остротой возникла перед промышленностью уже в первые дни войны, поскольку прошла массовая мобилизация и квалифицированные рабочие стали солдатами. Им на смену пришли женщины и подростки без квалификации и рабочего опыта.