Литмир - Электронная Библиотека
A
A
Курс «Современный ТРИЗ». Модуль «Алгоритм решения инжиниринговых задач АРИнЗ» - _43.jpg

Рис. 11. Снижение стоимости владения.

Максимальные затраты приходятся на технологические потери, а при расчете издержек на клапан – на обслуживание и ремонт. Их снижение позволит существенно уменьшить стоимость владения арматурой за весь цикл проекта. Наш инжиниринговый смарт калькулятор должен сыграть здесь свою роль. Тогда и финансистам будет легче показать истинные затраты, например, рассчитанные на тонну продукции за срок жизни проекта.

Курс «Современный ТРИЗ». Модуль «Алгоритм решения инжиниринговых задач АРИнЗ» - _44.jpg

Рис. 12. Эффективность внедрения сервисного обслуживания на основе плановой диагностики

Источники экономического эффекта при модернизации производства с применением интеллектуальной арматуры и цифровых позиционеров ND 9000.

1. Снижение потребления сырья и дорогих химикатов за счет уменьшения погрешности регулирования с 3–5% до 1–1,5% (до 80% от общего экономического эффекта).

2. Повышение выхода кристаллов соды оптимального гранулометрического состава, особенно, по колоннам за счет повышения точности регулирования во взаимосвязанных контурах.

3. Снижение затрат на обслуживание и повышение долговременной стабильности технологического процесса при переходе на цифровые позиционеры с плановой диагностикой.

Еще один важный элемент подготовки предложения – это анализ референцев. Рассмотрим референцы Метсо в содовой промышленности. Метсо работает с основным производителем соды в мире – Бельгийской группой Solvay. Некоторые из 42 предприятий SOLVAY, с которыми работает МА:

SOLVAY SODI, Devnya, Bolgaria

SOLVAY SANAI, Turkey

SOLVAY SODA GMBh, Rheinberg, Germany

SOLVAY Corporation, Brussel, Belgium

SOLVAY, Rosignano, Italy

SOLVAY, Portugal

SOLVAY, Poland

SOLVAY SODA CARBONATE, Alexandria, Egypt

SOLVAY CARBONATE FRANCE, Dombasle, France

SOLVAY IBERICA, Martorell, Spain

Референцы – это самое главное. Предприятия – не научная лаборатория, где можно проводить опыты. А передача на тестирование в опытную эксплуатацию – долго, накладно и неопределенно. Если у вас есть работающие решения – это большая вероятность того, что они будут приняты и на новом предприятии.

Эти положения были использованы в качестве базовых для подготовки предложения по арматуре для содовых производств и применяемых решений, приведенных как в базовом техническом предложении, так и в предложениях по совершенствованию контуров регулирования.

Таким образом, уже на предварительном (подготовительном и информационном) этапе удалось собрать достаточно информации для анализа возможностей использования современных инжиниринговых решений для данного производства. Отметим, что этот этап по напряженности работы и отличимых выводов для дальнейшей проработки со специалистами является наиболее тяжелым и трудоемким. Невидимыми нитями он связан с решениями, которые предлагают конкуренты и собственным видением специалистов, что может абсолютно не соответствовать выводам и последующим решениям, предлагаемым компанией.

За предварительным этапом последовала следующая часть анализа, основанная уже на опросных листах, присланных специалистом КИП, которому было поручено провести работу по получению предложений. С ним же велась значительная по объему предварительная переписка, во многом основывающаяся на диагностических вопросах (см. табл. «Контрольные вопросы в Горобченко С.Л, Применение комплексного инженерно-стоимостного анализа для маркетинговых целей, ТПА – экспресс 1\2013»). Они суммировались в следующие проблемные пункты:

Особенности примененных технических решений по регулирующим клапанам по представленной спецификации

КЛАПАНЫ

1. Большое количество примененных седловых клапанов.

1.1. В частности, для регулирования, там, где могут быть применены поворотные клапаны с большей способностью к регулированию и большей эффективностью. Общее количество регулирующих клапанов по спецификации составило 70 ед. отсечных по лоту 167 ед. из них значительное число – седловых линейных клапанов и задвижек. Имея в основном линейную собственную характеристику, седловые клапаны задают значительные нелинейности и возмущения в контурах.

1.2. Отсутствуют требования по степени линейности характеристики, например: «не менее чем до открытия 60% или выше».

1.3. Проблемой при использовании седловых клапанов могут стать протечки через узел «шток – сальник». Отмечено, что основные выбросы в цеху происходят через регулирующие седловые клапаны.

1.4. При использовании седловых клапанов дополнительной проблемой может стать необходимость постоянных перенастроек для соответствия заданному сигналу. Косвенно, специалисты КИПиА могут стремиться к установке т.н. наиболее «слабых» настроек, что снижает быстродействие систем и приводит к потере качества управления. Если настройки не меняются, то качество управления, как правило, падает. Для устранения подобных явлений, необходимо периодически проводить диагностику работы на соответствие выполнения сигнала заданию. Эффективность применения современной системы АСУ ТП при слабых настройках будет резко снижена. Пример анализа роста дисперсии ошибки со временем из-за слабых настроек показан на рис. 13 (по данным КЦ Промконсалт ВШТЭ СПбГУПТД, Санкт-Петербург).

Курс «Современный ТРИЗ». Модуль «Алгоритм решения инжиниринговых задач АРИнЗ» - _45.jpg

Рис. 13. Зависимость дисперсии ошибки от коэффициента усиления К при различных возмущениях.

Ниже и доказательство этого, построенного на анализе внедрения многих АСУ ТП с разными исполнительными устройствами. Заметно падение эффективности применения современной системы АСУТП при применении неэффективных исполнительных устройств, рис.14.

Курс «Современный ТРИЗ». Модуль «Алгоритм решения инжиниринговых задач АРИнЗ» - _46.jpg

Рис. 14. Графики изменения показателей П1, П2 и П3 проекта АСУ ТП при различных вариантах модернизации регулирующей арматуры

1.5. В спецификации отсутствуют требования к позиционированию клапанов и позиционерам, способным работать в современных АСУ ТП.

1.6. При использовании седловых клапанов вероятно увеличение требований к насосам, чтобы обеспечить преодоление появляющихся дополнительных гидравлических сопротивлений. Гидравлическое сопротивление седловых клапанов достигает 4–6, тогда как у полнопроходных шаровых кранов и заслонок – 0,2.

1.7. Для уменьшения гидравлических сопротивлений будет выгоднее работать не в традиционной области 50–60% открытия, а выше.

2. Наличие большого числа элементов, имеющих значительные возможности для унификации, например, поворотные заслонки для регулирования и отсечки в ручном и автоматическом исполнении могут быть унифицированы.

3. Применение в схеме клапанов в варианте «отсечной – регулирующий», особенно для участков с обратным противодавлением среды.

4. Использование специализированного решения с фланцами.

ТРУБОПРОВОД

– Установка новых клапанов в существующую трубопроводную обвязку. При этом заужение трубопровода для обеспечения регулирования (по опросным листам) может достигать более 50%.

– Зарастание трубопровода является одной из главных проблем. Степень зарастания трубопровода может достигать 70%. Пример по опросу специалистов: зарастание трубопровода 600 мм в диаметре с уменьшением диаметра до 100 мм.

– Необходимость учета обслуживания трубопровода с применением заглушек.

– Большая доля чугунных трубопроводов.

– Требование повышения коррозионностойкости для участков аммонизированного рассола. Аммонизированный рассол представляет собой агрессивные растворы из САР с температурой до 70оС и жидкость ПГКл-1 с температурой до 38–40оС.

18
{"b":"747166","o":1}