Литмир - Электронная Библиотека
Содержание  
A
A

Термин «сингулярность Дьяконова» впервые появляется в работах российского физика А.Д. Панова. В аннотации и предисловии к книге Панова «Универсальная эволюция и проблема поиска внеземного разума (SETI)», читаем:

«Вводятся представления о масштабно-инвариантном аттракторе планетарной эволюции и его завершении в режиме с обострением «сингулярностью Дьяконова» в первой половине XXI века». <…>

«Удивительной находкой оказалось то, что подход И.М. Дьяконова, который в основу анализа положил последовательность фазовых переходов социальной системы, естественным образом обобщается на всю эволюцию – и биосферы, и цивилизации, начиная с появления жизни на Земле. Эволюция цивилизации в определенном смысле оказывается гладким автомодельным продолжением эволюции биосферы, а точка сингулярности получает статус некоторого переломного или завершающего момента всей четырехмиллиардолетней истории развития жизни на Земле» [9].

Приведенные выдержки воспринимаются с трудом, но даже если не вникать в смысл этой физикалистской абракадабры можно все-таки понять, что Панов определяет сингулярность Дьяконова как предельную точку последовательности дат своих планетарных революций. Такая инициатива представляется выражением самонадеянности, некомпетентности и бестактности ее автора. Здесь важно не только то, что совмещая биосферную и историческую сингулярность, Панов приходит к абсурдным, апокалиптическим результатам.

Даже и сам термин «сингулярность» Панов понимает неправильно. Действительно, для того, чтобы можно было говорить о сингулярной точке истории, эволюции необходимо, чтобы существовал количественный показатель исторического или эволюционного развития, который бы неограниченно возрастал за конечный промежуток времени. Поскольку подобный показатель в построениях Панова отсутствует[18], то ни о какой вертикали Снукса – Панова, ни о каком режиме с обострением в первой четверти XXI века – говорить не приходится.

Так, например, если считать, что ускорение исторического процесса было не гиперболическим, а экспоненциальным, то «переход к вертикали» занимал бы бесконечно долгое время. И речь в таком случае шла бы не о точке сингулярности, а о некотором конечном (в идеальном случае бесконечном) интервале времени – эпохе перемен.

Говорить об исторической сингулярности или сингулярности Дьяконова стало возможным лишь после работ С.П. Капицы, который первым обоснованно связал эволюцию человека и историю человечества с растущей численностью населения Земли. Согласно принципу демографического императива Капицы именно численность населения Земли в эпоху гиперболического роста и есть та переменная, которая может служить естественной мерой эволюции и развития человечества как системы.

Поскольку в формуле Фёрстера в двадцатых годах XXI столетия ее значение устремляется к бесконечности, понятие «сингулярность Дьяконова» обретает смысл. В таком случае историческая сингулярность или сингулярность Дьяконова может быть также названа «сингулярностью Дьяконова – Капицы».

* * *

Эта глава написана с единственной целью: противостоять интерпретации понятия «сингулярность Дьяконова» в понимании Панова и дать ему единственно правильное, на наш взгляд, определение. Весь представленный ниже материал можно разделить на две части.

В первой части, сингулярность Дьяконова – Капицы будет определена нами исходя из развиваемой здесь гипотезы о растущей сети, сопровождающей эволюционный и исторический процесс. Такое определение, разумеется, не может считаться бесспорным, поскольку опирается на гипотезу.

Так как ошибка здесь недопустима по этическим соображениям, ведь эта историческая сингулярность ассоциируется с именами известного историка и выдающегося популяризатора науки, – нами будет еще раз дано ее определение, но уже без всяких ссылок на нашу гипотезу, а на основании лишь известных исторических фактов. Это будет сделано во второй части нашей работы.

Сингулярность Дьяконова – Капицы как момент завершения первого цикла демографического перехода

Прежде всего, покажем, что сингулярность Дьяконова – Капицы, согласно предлагаемой здесь гипотезе, приходится на 2022 год с погрешностью примерно в два, три года и в полном соответствии с демографическими данными. Запишем формулу теоретической гиперболы:

Население Земли как растущая иерархическая сеть II - i_068.png

Рис. 1. Зависимость числа носителей сети в клаттерах от неолита до второй половины ХХ века.

Здесь N(t) – численность носителей в клаттерах (один клаттер содержит 65536 носителей), а t – время в циклах τ (τ = 40 лет) от начала неолита. Моменты времени t = 0, 128, 192, 224, 240, 248, 252, 254, 255 – даты, когда сеть достигает гармонической стадии своего роста. (Продолжительность восьми исторических периодов, соответственно: 128τ, 64τ, 32τ, 16τ, 8τ, 4τ, 2τ, т.) Момент t = 256 – точка сингулярности или время окончания первого цикла демографического перехода, если отсчет времени вести от начала неолита.

Если отсчет вести от начала новой эры, точку сингулярности получаем, прибавляя к дате достижения сетью совершенства (т. е. к 1982 году) время цикла сети: 1982 + 40 = 2022. Постоянная Фёрстера для теоретической гиперболы равна: С = kK2τ = 1.1·655362·40= 1.89·1011 лет. Если к тому же время измерять в годах, а численность в миллиардах человек, то формула (1) приобретает вид:

Население Земли как растущая иерархическая сеть II - i_069.png

Рис. 2. Зависимость численности населения Земли от неолита до наших дней согласно теории.

Но именно так и выглядит эмпирическая гипербола, лучше всего описывающая рост населения мира за последние сорок тысяч лет:

Население Земли как растущая иерархическая сеть II - i_041.png

Рис. 3. Зависимость численности населения Земли от палеолита до наших дней по данным Мак-Эведи, Джоунса и Кремера.

Эта гиперболическая зависимость, из семейства гипербол Фёрстера, лучше всего задает рост численности населения мира от 40.000 г. до н. э. до 1970 г. по данным Мак-Эведи, Джоунса (1978) и Кремера (1993) для периода от 40.000 г. до н. э. до 1950 г. н. э. [13]

Зависимость (4) можно получить и из формулы Фёрстера (см. главу «Константы Капицы»), если подобрать гиперболу с целочисленным показателем n = -1, находящуюся на наименьшем «расстоянии» от гиперболы Фёрстера с n = -0.99 и C = 179 млрд. У этой гиперболы C = 188 млрд и t0 = 2022, что практически не отличается от данных Мак-Эведи, Джоунса и Кремера.

Теоретическая гипербола (3), а значит и (1), практически тождественна гиперболе (4). Причем эта гиперболическая зависимость описывает с хорошей точностью рост населения мира вплоть до конца семидесятых, начала восьмидесятых годов прошлого столетия. Это вытекает из того простого факта, что теоретическая гипербола по определению должна проходить через точку (1982; 655362); учитывая то, что сеть достигает совершенства в 1982 году, а зомби-коэффициент k = 1.1, получаем: 1,89·1011/[(2022–1982)·1.1] ≈ 655362. Следовательно, 2022 год – дата, отстоящая от момента завершения роста сети на время цикла сети – действительно, точка сингулярности.

Построим в одних координатных осях гиперболу (4) и график интерполяции данных по численности населения мира в интервале: 1960–1990 гг. по данным International Data Base (IDB) с шагом в один год.

Население Земли как растущая иерархическая сеть II - i_070.png

Рис. 4. Гипербола (4) и интерполяция демографических данных за 1960–1990 гг.

вернуться

18

«Пановская» частота фазовых переходов или, что то же самое, «коротаевская» скорость макроэволюционного развития таким показателем считаться не может. Подробнее см. далее: «Миф о пановско—коротаевской сингулярности».

42
{"b":"718523","o":1}