Литмир - Электронная Библиотека
Содержание  
A
A

Гиперболой ее можно считать лишь в первом приближении. Но уже и такого представления достаточно, чтобы понять, что единой гиперболы, в соответствии с которой происходил рост населения Земли на всех этапах эволюции и истории – не существует. Разрыв в динамике изменения коэффициента сжатия (1.7 —> 2.6) говорит о том, в эпоху неолита происходит скачок скорости роста и начинается демографический взрыв.

Что касается раннего (нижнего) палеолита, то поскольку никакими более-менее надежными данными по численности наших далеких предков мы не располагаем, то и сравнивать теоретические данные здесь не с чем. Для верхнего палеолита (40—12 тыс. лет назад), когда человек расселился по всей Земле, существуют данные и оценки разной степени надежности, на основе которых Мак-Эведи и Джоунсом [38] была предложена гиперболическая зависимость (4):

Население Земли как растущая иерархическая сеть II - i_041.png

Рис. 1. Гипербола Мак-Эведи и Джоунса.

Сравним теорию с этой гиперболой. Для этого сдвинем начало отсчета времени от начала новой эры к неолиту, а численность будем измерять в клаттерах. За точку отсчета на оси времени возьмем 8154 год до н. э. (255·39,75 = 10136, 10136 – 1982 = 8154, 10136 + 39,75 ≈ 10180).

И для удобства расчетов ищем зависимость от (-t), т. е. отсчитываем время от 8154 года до н. э. в прошлое. Тогда t = 0 – начало неолита, а t = -10180 – точка сингулярности гиперболы демографического роста. С учетом зомби-коэффициента k = 1.1 находим число клаттеров Сети как функцию времени:

Население Земли как растущая иерархическая сеть II - i_042.png

Рис. 2. Зависимость числа клаттеров Сети человека в млрд от (– t) по формуле Мак-Эведи и Джоунса. Время отсчитывается в годах от начала неолита в прошлое.

Алгоритм дает:

Население Земли как растущая иерархическая сеть II - i_043.png

Рис. 3. Зависимость числа клаттеров Сети человека от времени в циклах согласно теории.

Построим в одних координатных осях графики теоретической и эмпирической зависимости числа клаттеров Сети от времени. Время отсчитываем в прошлое в циклах и в логарифмическом масштабе: от 8 тыс. года до н. э. до 1,7 млн лет до н. э. По оси ординат, для лучшего сравнения, логарифмический масштаб применять не будем.

Население Земли как растущая иерархическая сеть II - i_044.png

Рис. 4. Сравнение алгоритма теоретической зависимости и гиперболы Мак-Эведи и Джоунса для времен от начала эволюции до неолита.

Алгоритм дает целое число клаттеров, т. е. его погрешность составляет 65536 носителей. Наибольшее отклонение теории от гиперболы (4) равно 11 %. Теоретическая кривая почти не отличается от гиперболы Мак-Эведи и Джоунса, следовательно, теория полностью соответствует имеющимся демографическим данным для времен до 8154 года до н. э. Точность всех дат зависит от точности определения начала перехода: 1982 год (слабо) и от точности, с которой известна постоянная цикла τ = 39.75 лет (сильно).

Второй этап роста Сети человека

Последние 255 циклов роста Сети человека

1.7 млн лет и 42142 цикла понадобилось Сети, чтобы собрать 256 клаттеров. 42143-ий цикл был первым циклом, в процессе которого с нуля был собран дочерний клаттер. Начало этого цикла – восемь тысяч лет до нашей эры – было началом эпохи неолита: времени перехода от охоты и собирательства к оседлому образу жизни, появлению сельского хозяйства, домашних животных, культурных растений.

Именно в этот момент времени Сеть человека достигает гармонической стадии своего роста, но вопрос о том, как это повлияло на социум, мы рассмотрим позже. Почему десять тысяч лет тому назад началась новая эра в истории человечества?

На самом деле Сети это было известно еще во время старта, и по мере приближения к этому моменту она выбрала из всех возможных сценариев тот, который обеспечивал необходимую динамику ее роста.

Здесь нужно ясно понимать, что не культурные и технологические достижения неолита были первопричиной ускоренного роста численности населения мира, а плановые потребности Сети по приросту числа ее клаттеров.

Здесь и в дальнейшем Сетью (в смысле имени собственного) будем называть изначально существующую и прогрессирующую ментальность природы, выражающуюся в плановом, эквифинальном росте биниальной иерархической сети соответствующего ранга на множестве носителей текущей авангардной системы эволюции.

В качестве носителей иерархических сетей различных рангов выступали представители авангардных систем ядерной, химической, биологической и социальной эволюции – от бариона до человека. Рост Сети человека от 256-ти до 65536-ти клаттеров описывается теоретической гиперболой:

Население Земли как растущая иерархическая сеть II - i_045.png

Рис. 1. Теоретическая зависимость числа клаттеров Сети от номера цикла от неолита до перехода; ce(X) – ближайшее целое, меньшее или равное X (ce(2.3) = 2).

Найдем зависимость численности носителей Сети от 8154 года до н. э. до 1982 года н. э. Интерполируем кубическими сплайнами функцию численности населения мира, заданную на сетке с шагом 39.75 года:

Население Земли как растущая иерархическая сеть II - i_046.png

Рис. 2. Зависимость численности носителей Сети от 8154 года до н. э. до 1982 года.

Казалось бы, что время роста сети с точностью до года – это абсурд. Но смысл предлагаемой здесь гипотезы в том, что все стадии и этапы эволюции человека (и не только человека) определяются ростом иерархической сети. Мы считаем, что время начала каждого цикла должно выражаться с «абсолютной» точностью.

Запишем это в системе MathCAD:

Население Земли как растущая иерархическая сеть II - i_047.png

Рис. 3. Сравнение гиперболы Мак-Эведи и Джоунса с теоретической гиперболой при k = 1.0, k = 1.1, k = 1.2 (k эомби-коэффициент) на временах от начала неолита до 1982 года.

При k =1.1 теоретическая гипербола сливается с гиперболой Мак-Эведи и Джоунса. Сравним теперь теоретическую гиперболу (k = 1.1) с гиперболами Фёрстера и Хорнера за последние два столетия:

Население Земли как растущая иерархическая сеть II - i_048.png

Рис. 4. Зависимость численности Земли за последние два столетия для гипербол Фёрстера, Хорнера и теоретической гиперболы.

Теоретическая гипербола практически сливается с гиперболой Хорнера. Итог таков: предложенная модель на интервале от -8154 до 1982 года согласуется с демографическими данными так же хорошо, как и все эмпирические гиперболы роста населения Земли. Главный же вывод состоит в том, что предложенная модель описывает рост населения Земли в точном соответствии с демографическими данными на всем протяжении истории развития человечества.

При этом сама гиперболическая зависимость, константы Капицы К и τ, а также постоянная Фёрстера С выводятся из идеальной математической схемы и космологических данных (Tu = 13.81 млрд лет) без всякой связи с работами Фёрстера и Капицы.

Теперь о точности теоретической зависимости. Прежде всего, важно еще раз отметить то, что теоретическая гипербола – это точечная функция и областью ее определения и множеством значений являются 256 фиксированных значений.

23
{"b":"718523","o":1}