Ответ на поставленный им вопрос, который в итоге получил название «задача Плато», удалось найти, по крайней мере применительно к обычным, двумерным поверхностям, что в 1930 году доказал один математик из Нью-Йорка. Саймонс хотел выяснить, является ли это верным для минимальных поверхностей с более сложными поверхностями – то, что геометры называют минимальными поверхностями в римановых многообразиях.
Математики, которые занимаются решением теоретических задач, зачастую с головой погружаются в свою работу: годами они видят в снах решение своей задачи, мечтают и размышляют о ней во время прогулок. Те, кто не сталкивался с так называемой абстрактной или чистой математикой, расценят это как бессмысленное занятие.
Однако Саймонс не просто решал уравнения, как какой-то старшеклассник. Он надеялся открыть и систематизировать универсальные принципы, правила и законы, которые расширят понимание об этих математических объектах.
Альберт Эйнштейн утверждал, что есть естественный порядок вещей; можно сказать, что математики, наподобие Саймонса, занимаются поиском доказательства существования такого мироустройства. В этой работе заключается истинная красота, особенно когда в результате удается раскрыть новые сведения о естественном порядке Вселенной. Подобные теории зачастую находят практическое применение, даже по прошествии многих лет, расширяя наши познания о Вселенной.
В результате, благодаря разговорам с Фредериком Альмгреном-младшим, профессором из Принстонского университета, который нашел решение этой задачи в трех измерениях, Саймонс смог добиться существенного прорыва. Джеймс создал собственное дифференциальное уравнение в частных производных, известное как «уравнение Саймонса», и использовал его для разработки единого решения для шести измерений, а также предоставил контрпример для седьмого измерения. Спустя какое-то время трое итальянцев, в том числе обладатель Филдсовской премии Энрико Бомбиери, доказали, что приведенный контрпример был верен.
В 1968 году Саймонс опубликовал статью «Минимальные поверхности в римановых многообразиях», которая стала фундаментальной работой для геометров, а также оказалась полезной для ряда смежных дисциплин. Исследователи по-прежнему цитируют статью, что только подчеркивает ее непреходящее значение. Благодаря этим достижениям Саймонс стал одним из самых выдающихся геометров в мире.
Несмотря на достигнутый успех на поприще математики и расшифровки кодов, Джеймс продолжал искать новые источники дохода. IDA предоставляла научным сотрудникам гибкий график работы, что позволило Саймонсу находить время для изучения фондового рынка. Работая совместно с Баумом и двумя другими коллегами, Джеймсу удалось разработать новую систему торговли ценными бумагами. В рамках работы в IDA они опубликовали секретную статью под названием «Вероятностные модели и прогнозирование конъюнктуры фондового рынка», в которой утверждали, что предложенный метод торговли способен принести годовую доходность в размере минимум 50 %.
Саймонс и его коллеги отбросили главную информацию, которую берут в расчет большинство инвесторов: прибыль, дивиденды и корпоративные новости – то, что взломщики кодов называют «базовая экономическая статистика рынка». Вместо этого они предложили искать небольшое количество «макроскопических переменных», которые позволяют прогнозировать поведение рынка в краткосрочной перспективе. Они утверждали, что финансовый рынок имеет восемь базовых «состояний», таких, как «высокая дисперсия», когда колебания цен превышают средний уровень, и «хорошее», когда цены растут постепенно.
Уникальность этой статьи заключается в том, что исследователи не пытались определить или предсказать данные состояния с помощью экономической теории, либо других традиционных методов. Кроме того, они не выясняли причины, по которым ситуация на рынке развивалась в том или ином направлении. Саймонс и его коллеги использовали математику для того, чтобы определить ряд состояний, наиболее соответствующих наблюдаемым ценам на рынке, а разработанная модель в соответствии с этим давала рекомендации, какие сделки совершать. По всей видимости, Саймонс и его коллеги не придавали значения тому, почему именно так происходит. Данная стратегия применялась для того, чтобы получить выгоду из предполагаемого состояния рынка.
Для большинства инвесторов, в отличие от игроков в покер, отлично знакомых с таким методом, это был неслыханный подход. Игрок в покер определяет настрой противника, анализируя его поведение, и в соответствии с этим выбирает подходящую стратегию. Если напротив него сидит упавший духом человек, то по отношению к нему применяется одна тактика, если соперник выглядит чересчур довольным и самоуверенным, то другая. Для того чтобы извлечь выгоду из настроя соперника, игрокам совершенно не нужно знать, почему именно их оппонент хмурится или, наоборот, неудержимо радуется; необходимо лишь определить его состояние. Саймонс и его коллеги по расшифровке кодов предложили использовать аналогичный подход применительно к прогнозированию цен акций. В своей работе они опирались на сложный математический инструмент под названием «скрытая марковская модель». Подобно тому, как игрок в покер угадывает настроение противника, обращая внимание на принятые им решения, аналогичным образом инвестор может определить состояние рынка, анализируя колебания цен на акции.
В конце 1960-х годов статья Саймонса по-прежнему нуждалась в доработке. Он и его коллеги сделали изначальное допущение о том, что сделки могут заключаться «при идеальных условиях», которые не включали в себя торговые издержки[18]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.