Отсутствующие данные имеют решающее значение для понимания происходящего.
В истории Challenger, однако, остался один загадочный момент. Хотя официальному расследованию потребовался не один месяц, чтобы сделать выводы о причинах аварии, цена акций Morton Thiokol упала на 11,86 % прямо в день катастрофы. При этом изменения цены акций компании даже на 4 % были редкостью. Котировки акций других компаний, принимавших участие в создании ракеты-носителя, также упали, но существенно меньше. Такое ощущение, что рынок знал о настоящей причине аварии. Неужели снова темные данные?
Сила темных данных
Этот последний пример показывает, насколько катастрофическими могут стать ситуации, когда не обращают внимания на темные данные. А они, по всей видимости, представляют реальную опасность. Однако картина все же не настолько мрачная. Оказывается, само осознание факта существования темных данных уже может дать нам преимущество. Что-то вроде принципа дзюдо для науки о данных; и в этом дзюдо есть конкретные приемы, которые я опишу в части II книги, а пока просто назову несколько из них.
В главе 2 пойдет речь о так называемых рандомизированных контролируемых исследованиях. В главе 9 мы вновь вернемся к ним, но рассмотрим с иного ракурса. Для примера возьмем медицинские исследования, когда сравнивают два метода лечения и при этом назначают их двум группам пациентов. Однако просто разделить людей на группы недостаточно. Если известно, кому какое лечение назначено, это может повлиять на результаты – исследователи могут относиться к одной из групп более внимательно, чем к другой. Например, когда сравнивают новый непроверенный метод лечения со стандартным, исследователи, порой даже не осознавая этого, склонны тщательнее отслеживать побочные эффекты и проводить измерения в первой группе. Чтобы преодолеть эту потенциальную необъективность, в подобных исследованиях распределение методов лечения скрывают от исследователей (DD-тип 13: намеренно затемненные данные). В таких случаях говорят о слепом исследовании, чтобы указать на темные данные.
Другой хорошо известный метод, использующий темные данные, – выборочные опросы. Возможно, мы захотим узнать мнение горожан или покупателей конкретной продукции, но выяснять мнение всех без исключения слишком затратно. К тому же это занимает много времени, и мнения могут измениться. Альтернативой тотальному опросу является опрос отдельных представителей группы. Мнения тех, кто не попадает в наш опрос, и будут темными данными. Вроде бы такая стратегия выглядит рискованно – она явно напоминает историю с базой данных TARN. Но оказывается, что, используя продуманные методы отбора людей для опроса, мы можем получить точные и достоверные ответы, при этом быстрее и дешевле, чем если бы обращались к каждому.
Третий способ заставить темные данные работать на нас заключается в так называемом сглаживании данных. В главе 9 мы увидим, что этот метод сродни выявлению незамеченных и не поддающихся наблюдению видов темных данных (DD-тип 14: фальшивые и синтетические данные) и позволяет получить более точные оценки и прогнозы.
Другие способы использования темных данных, которые носят весьма экзотические названия, мы также рассмотрим в главе 9. Некоторые из них широко применяются в таких областях, как машинное обучение и искусственный интеллект.
Всюду вокруг нас
Как мы видим, темные данные вездесущи. Они могут появляться повсеместно и где угодно, а их наиболее опасное свойство заключается в том, что мы по определению не можем быть уверенными в их отсутствии. Это означает, что необходимо постоянно быть начеку и задавать себе вопрос: «Что мы упускаем?»
Не потому ли многие мошенничества остаются незамеченными, что полиция ловит лишь неумелых преступников, а настоящие «мастера» продолжают «творить»? Берни Мэдофф основал свою фирму Bernard L. Madoff Investment Securities LLC в 1960 г., а арестован был лишь в 2008 г. Когда его приговорили к 150 годам тюремного заключения, ему исполнился уже 71 год – можно сказать, что ему практически все сошло с рук.
А множество потенциально излечимых больных, которых мы вовремя не диагностируем? Разве это не происходит лишь потому, что болезни на ранней стадии имеют гораздо меньше симптомов, чем в своей тяжелой форме?
Опасны ли социальные сети? Ведь они отражают только то, что мы уже знаем и чему верим, не посягая на нашу точку зрения, поскольку отбирают факты и события в пределах нашей зоны комфорта. Или, что еще хуже, те рассказы, которые люди выбирают для публикаций в социальных сетях, могут создавать у нас ложное представление о том, что жизнь всех остальных людей удивительно легка и прекрасна, а это прямой путь к депрессии – ведь в своей жизни мы встречаем так много препятствий.
Мы привыкли думать о данных как о числах. Но данные необязательно должны быть числами, включая и темные данные. Вот вам пример, в котором отсутствующей критической информацией является одна буква.
Арктическим экспедициям 1852, 1857 и 1875 гг. поставлялось Arctic Ale – пиво с особо низкой температурой замерзания, изготовленное Сэмюэлем Аллсоппом. Альфред Барнард, написавший историю британского пивоварения, попробовал этот эль в 1889 г., описав его как напиток «приятного коричневого оттенка, обладающий вкусом вина и орехов и таким шипением, словно был сварен только что… Из-за большого количества оставшегося неферментированного экстракта, его следует рассматривать как чрезвычайно ценный и питательный продукт»[10]. Как раз то, что нужно в арктических экспедициях.
В 2007 г. бутылка из партии 1852 г. была выставлена на аукционе eBay со стартовой ценой $299. Продавец, у которого она хранилась в течение 50 лет, неправильно написал название пива, пропустив одну «р» в слове «Allsopp». Как следствие, предмет не обнаруживался поисковыми запросами любителей винтажного пива, так что поступило только две заявки. Из них победила заявка 25-летнего Даниэля Вудула, который предложил целых $304. Стремясь определить ценность покупки, Вудул тут же вновь выставил бутылку на продажу, но на этот раз с правильным названием. В ответ было подано 157 заявок с максимально предложенной ценой $503 300.
В этом случае одна пропущенная буква стоила полмиллиона долларов[11]. Это наглядный пример того, что потеря информации может привести к значительным последствиям. Как мы увидим далее, полмиллиона долларов – ничто по сравнению с убытками в других ситуациях, связанных с отсутствием данных. Они способны разрушать судьбы, уничтожать компании и, как в случае с Challenger, приводить к гибели людей. Короче говоря, отсутствующие данные важны.
В случае с Arctic Ale чуть большее внимание помогло бы избежать проблемы. Небрежность, безусловно, одна из самых распространенных причин появления темных данных, но далеко не единственная. Неприятный факт заключается в том, что данные могут стать темными по очень широкому ряду причин, и далее в книге мы увидим это.
Заманчиво считать темные данные исключительно тем, что можно было бы получить, но по каким-то причинам не удалось. Безусловно, это самый очевидный вид темных данных. Отсутствующие данные по заработной плате в опросе, в котором часть респондентов отказалась разглашать эту информацию, конечно, являются темными данными, но также ими является и уровень заработной платы безработных, которые не получают ее и, следовательно, просто не могут назвать. Ошибки измерения и неточности скрывают истинные значения; обобщая данные (например, вычисляя средние значения), мы теряем детали; неверные формулировки запросов искажают смысл того, что мы хотим узнать. В более общем понимании любую неизвестную характеристику некоей генеральной совокупности (статистики часто используют термин «параметр») можно рассматривать как темные данные.