Литмир - Электронная Библиотека
Содержание  
A
A

Это заключение согласуется с ранее проведенными лабораторными экспериментами, в которых моделировался процесс эволюции русла реки «в идеальных условиях». Оказалось, что в изначально прямолинейном русле очень быстро образуются меандры, хорошо описываемые кривой Эйлера (илл. 8a). Очевидно, что в природе поведение русла реки существенно сложнее «лабораторного» русла (например, из-за неровной местности). И все же подобные структуры, обычно периодические, возникают естественным образом, когда река течет по равнине (илл. 8b). Как правило, чем шире река, тем больше на ней излучин.

Термин «меандры» породила очень извилистая турецкая река Большой Мендерес (тур. Büyük Menderes), название которой происходит от греческого Μαιανδροs («меандрос»). Помимо излучин реки, меандрами называют также извилистые потоки, которые образуются на поверхности ледников, или океанические течения, такие как Гольфстрим.

Для всех этих явлений, происходящих в однородных средах, случайные процессы способствуют образованию более или менее периодических излучин, однако причины их возникновения различны.

Физика повседневности. От мыльных пузырей до квантовых технологий - i_010.png

8. а. Меандры, появившиеся в лабораторных условиях в первоначально прямолинейном канале, проложенном в однородной рыхлой среде. Через несколько часов под действием эрозии он изгибается и появляются меандры. Соответствующая кривая Эйлера обозначена пунктиром.

b. Форма природной реки (Потомак в Поу-Поу, США) и ее приближение эйлеровой кривой (пунктирная линия)

Опыт с продольным изгибом

Возьмем плоскую пластиковую линейку, поставим ее на стол и надавим на верхний конец. Пока приложенная сила невелика, линейка остается прямой (см. илл. ниже). Но при определенном давлении линейка сгибается: это явление называется продольным изгибом. Оно возникает, когда сила, действующая на концы, превышает некоторый предел, который тем ниже, чем длиннее и гибче линейка. Очевидно, архитекторы и строители не должны превышать этот предел, когда, например, подпирают террасу металлическими опорами…

В нашем опыте, когда сила воздействия превысила этот предел, линейка согнулась вправо. Но с той же вероятностью она могла бы согнуться и влево! Эту ситуацию можно сравнить с выбором, стоящим перед путешественником, который оказался на незнакомой развилке. Физическое явление, которое открывает две равновероятные возможности изменения какого-либо параметра, ученые называют бифуркацией (от лат. bifurcus – «раздвоенный»).

Физика повседневности. От мыльных пузырей до квантовых технологий - i_011.jpg

Явление продольного изгиба

a. До тех пор, пока вертикальная сила F, прилагаемая к линейке, остается меньше предела F0, линейка не деформируется.

b. Как только F > F0, линейка начнет сгибаться (и даже может сломаться, если сила станет слишком большой).

c. Изменение угла Ѳ0, который образует вертикальная линейка в зависимости от величины силы F. Когда последняя достигает величины F0, линейка может изогнуться вправо (Ѳ0 > 90˚) или влево (Ѳ0 < 0): кривая изменения угла Ѳ0 имеет две ветви, которые создают бифуркацию

Озера и реки

В большое озеро обычно впадает много водных потоков. Например, в Женевское озеро втекает не только Рона, но и небольшие реки, такие как Дранс на юге и Вёвеж на севере. А вытекает из него одна Рона. И это общее утверждение: независимо от количества впадающих в озеро рек, из него никогда не вытекает более одной! Как это объяснить?

Причина заключается в том, что вода из озера вытекает по самому глубокому (низкому) руслу, которое она находит. Если не принимать во внимание исключительные случаи паводков, то обычно поверхность воды в озере находится на уровне самого низкого из возможных мест вытекания, поэтому из него выходит только один поток. Даже если из озера в данный момент вытекает несколько рек, такая ситуация будет нестабильной: ее можно наблюдать только на недавно сформировавшихся озерах. Действительно, самый глубокий поток с более быстрым течением вызовет и более сильную эрозию. В результате его пропускная способность будет увеличиваться, что приведет к снижению уровня озера. Поэтому другие русла будут постепенно мелеть и в конце концов заполнятся грязью. Таким образом, из всех вытекающих из одного озера рек «выживает» только самая глубокая.

Физика повседневности. От мыльных пузырей до квантовых технологий - i_012.jpg

9. Дельта Роны. Подходя к Средиземному морю, река разделяется на несколько рукавов

Аналогичными свойствами обладают и реки. Хорошо известно, что реки способны сливаться (когда одна впадает в другую), в то время как разветвляются они очень редко. Поток воды повсюду следует по пути с наибольшим уклоном, и маловероятно, что в каком-то месте этот путь раздвоится. Лишь одна специфическая область является исключением: это устье реки, то есть место ее впадения в море, водохранилище, озеро или другую реку. Здесь река иногда разделяется на несколько рукавов, образуя дельту (илл. 9). Дело в том, что вдали от моря поток выстраивает свой путь через складки местности, которые формировались долгие миллионы лет. В дельте же, напротив, река сама формирует свои берега, при этом вынося песок в море и перекрывая этими отложениями свой путь.

Итак, река добралась до моря, и эта глава подходит к концу! Мы еще вернемся на морской берег в главе 5, чтобы обсудить другое удивительное природное явление – прилив.

Глава 2

Искусственные и природные волноводы

Каким чудом звук, порожденный вблизи австралийского побережья, достигает Бермудских островов в десятках тысяч километров от него? Чтобы это понять, проведем параллель между распространением звука и света, для описания которого мы привыкли использовать понятие «луч». Затем мы погрузимся в океан в поисках таинственного волновода, который может передавать звук на огромные расстояния.

За последние 20 лет огромное, постоянно растущее количество данных перемещается с одного континента на другой благодаря оптоволоконным кабелям, пересекающим океаны (илл. 1). На илл. 2 показан путь сообщения, отправленного с вашего компьютера или телефона американскому или японскому коллеге. Конечно, эти световые волны слабеют во время пути, но затухание относительно невелико, а необходимое количество промежуточных станций удивительно мало.

Распространение звуковых волн

Оказывается, что океан способен выступать в качестве акустического волновода. Это удивительное явление обнаружили советские и американские ученые в 1940-х годах: звуковые волны, распространяющиеся в океане, иногда обнаруживаются в тысячах километров от их источника! В одном из самых впечатляющих экспериментов звук подводного взрыва у побережья Австралии обогнул половину земного шара и был зарегистрирован на уединенном архипелаге Атлантического океана – Бермудских островах. Звуковой сигнал прошел под водой более 19 600 км – абсолютный рекорд!

Физика повседневности. От мыльных пузырей до квантовых технологий - i_013.png

1. Пучок оптических волокон в защитной оболочке. Оптические волокна из стекла или пластика имеют в диаметре 125 мкм

Физика повседневности. От мыльных пузырей до квантовых технологий - i_014.png

2. Распространение светового луча в оптоволокне. Передаваемый луч много раз отражается от границы между сердцевиной и оболочкой и таким образом направляется по волокну. Данные кодируются изменением интенсивности света

3
{"b":"692616","o":1}