Литмир - Электронная Библиотека
Содержание  
A
A

Глава 1

Реки, меандры и озера

Течение воды в реке – сложный процесс, который происходит в неоднородной среде. Хотя наука не объясняет всех нюансов ее движения, она дает ключ к пониманию основных свойств этого явления.

Сколько раз, гуляя по тропе вдоль ручья или реки, мы задавались вопросом: почему поток вместо кратчайшего пути (прямой линии) петляет из стороны в сторону? Конечно, некоторые его части почти прямые – из-за особенностей рельефа местности или проложенного человеком русла. Однако, когда водный поток свободно распространяется по равнине, обычно он вырисовывает петли и изгибы. Иногда образующиеся петли повторяются относительно регулярно (илл. 1). Как объяснить появление этих излучин, или меандров?

Чаинки в чашке…

Одним из первых, кто задумался о причинах формирования этих изгибов, был Альберт Эйнштейн. В 1926 году он представил Прусской академии наук доклад без каких-либо уравнений, озаглавленный «Причины образования извилин в руслах рек и так называемый закон Бэра». В чем же суть этого знаменитого закона? Основываясь на наблюдениях выдающихся географов XIX века, естествоиспытатель Карл Бэр пришел к выводу, что в Северном полушарии, в равнинной местности, правый берег рек обычно более крут, чем левый, а в Южном полушарии все наоборот: левый берег круче правого.

Прежде чем перейти к изучению излучин рек и формы берегов, Эйнштейн предлагает поставить небольшой опыт, воспроизводящий повседневное привычное нам действие: размешать ложечкой сахар в чашке чая. В этом эксперименте Эйнштейна заинтересовало явление, которое на первый взгляд кажется противоречащим здравому смыслу: вызываемое ложкой вращение жидкости создает вертикальные вихри (илл. 2). Чтобы их увидеть, Эйнштейн добавляет в воду чаинки. При размешивании жидкости ложкой видно, что чаинки собираются в центре дна чашки (илл. 3). Предлагаем читателю убедиться в этом самостоятельно!

Физика повседневности. От мыльных пузырей до квантовых технологий - i_003.jpg

1. Излучины реки Снейк («Змея»), США

Вот как Эйнштейн объясняет это явление: в результате вращения на жидкость действует центробежная сила, отбрасывающая ее от оси вращения, и она тем сильнее, чем быстрее вращение (см. главу 4, «Еще одна фиктивная сила: центробежная»). У стенок чашки жидкость тормозится трением, поэтому вращается немного медленнее, чем в центре чашки. «В частности, – добавляет Эйнштейн, – угловая скорость вращения, а следовательно, и центробежная сила у дна чашки меньше, чем у краев. Таким образом возникает циркуляция жидкости, показанная на илл. 2, которая и заставляет чаинки собираться в центре чашки».

Физика повседневности. От мыльных пузырей до квантовых технологий - i_004.png

2. При размешивании воды в чашке ложечкой в жидкости образуются вертикальные вихри

Физика повседневности. От мыльных пузырей до квантовых технологий - i_005.png

3. Опыт Эйнштейна. Воду с чаинками размешивают ложечкой (а). Вскоре чаинки собираются в центре стакана (b) и в конечном итоге опускаются на дно (c). Их движение доказывает наличие вертикальных вихрей, хотя их существование, кажется, противоречит интуиции

Физика повседневности. От мыльных пузырей до квантовых технологий - i_006.png

4. Циркуляция воды на изгибе реки по Эйнштейну. Центробежная сила, направленная от внутреннего берега к внешнему, действует в каждой точке жидкости. Но вблизи дна ее действие уменьшается из-за трения, и в основном потоке возникает вертикальная циркуляция. Она захватывает песок с внешнего берега и относит во внутреннюю часть меандра

Как меняется русло рек?

Теперь проанализируем движение воды в той части реки, где она образует излучину. Оно аналогично движению воды в чашке, отмечает Эйнштейн. Так же как жидкость в ходе эксперимента тормозилась стенками чашки, скорость потока уменьшается трением в непосредственной близости от дна: таким образом, центробежная сила, направленная наружу от поворота, здесь меньше, чем у поверхности. Таким образом, возникает вертикальная циркуляция, обращенная во внешнюю сторону излучины около поверхности и внутрь вблизи дна (илл. 4).

Это завихрение переносит внутрь изгиба землю и гальку, которые вымывает из внешнего берега. На внутреннем берегу образуется намыв точно так же, как возникал «нанос» чаинок в центре дна чашки в предыдущем опыте. В обоих случаях, когда вода поднимается и под действием силы тяжести оставляет все, что влекла за собой, происходит осаждение. Эрозия внешнего берега и намыв на внутреннем берегу постепенно превращают едва заметный изгиб в меандр с крутым внешним и пологим внутренним берегом. Вследствие продолжающейся эрозии русло реки, скорее всего, в конце концов сольется у начала и конца изгиба и возникнет остров (илл. 5 и 6).

Физика повседневности. От мыльных пузырей до квантовых технологий - i_007.png

5. Изгиб реки, поначалу умеренный (1), постепенно увеличивается, образуя излучину с отложением нанесенного песка на внутреннем берегу (2), а затем приводит к образованию острова или озера в форме подковы (3)

Вышеизложенные соображения делают понятным различие между формой внешнего и внутреннего берегов в излучине, но это еще не все. Как объяснить закон Бэра, согласно которому формы правого и левого берегов различны не только на излучинах? И как объяснить наблюдения географов, которые указывают, что в Северном и Южном полушариях крутость берегов противоположна? Читатель уже догадывается, что здесь, вероятно, играет важную роль вращение Земли, мы вернемся к нему в главе 4, «Возвращение к закону Бэра».

Физика повседневности. От мыльных пузырей до квантовых технологий - i_008.jpg

6. Меандр Сены в Лез-Андели, вид на замок Шато-Гайар и остров. Внешний берег крутой, а внутренний – пологий

Какую форму принимают меандры?

Форма русла реки во многом зависит от рельефа местности, по которой река протекает. В районе с неоднородным ландшафтом река петляет, избегая неровностей и выбирая путь с наибольшим уклоном. Но и на равнине прямолинейность русла не сохраняется. Небольшой обвал земли или падение дерева на берегу заставляют поток образовать изгиб, который может постепенно увеличиваться, образуя меандр в соответствии с описанным выше процессом.

Какую именно форму обычно принимают меандры реки, текущей по равнине? В 1960-х годах геологи пришли к выводу, что каждая извилина имеет специфическую форму – такую, которую принимает гибкий стержень, если его согнуть, приблизив концы друг к другу (илл. 7). Она представляет собой эйлерову кривую, названную так в честь швейцарского математика Леонарда Эйлера (1707–1783), который первым решил эту задачу. Работа Эйлера по-прежнему широко цитируется в руководствах о прочности балок – те начинают изгибаться, если слишком сильно надавить на их концы (см. врезку в главе 1, «Опыт с продольным изгибом»).

Физика повседневности. От мыльных пузырей до квантовых технологий - i_009.png

7. Форма, принимаемая упругим стержнем, концы которого зафиксированы в A и B, называется кривой Эйлера. Угол Ѳ между касательной и прямой AB позволяет определить кривизну dѲ/ds, производную от Ѳ относительно пути, пройденного по кривой. Эйлерова кривая минимизирует среднюю квадратичную кривизну стержня, то есть минимизирует интеграл ∫(dѲ/ds)2ds, где Ѳ – угол между касательной и некоторым выбранным направлением, а s – длина вдоль кривой. Интеграл берется вдоль всего стержня

2
{"b":"692616","o":1}