Литмир - Электронная Библиотека
A
A
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _8.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _9.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _10.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _11.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _12.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _13.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _14.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _15.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _16.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _17.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _18.jpg
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _19.jpg

ПРИМЕНИМОСТЬ ПОВОРОТНОЙ АРМАТУРЫ В ТЕПЛОВЫХ СХЕМАХ ТЭС и АЭС

Хотя тенденция к замене задвижек и вентилей, безусловно, прослеживается, однако, поворотная арматура не заменяет многие специализированные виды арматуры. В частности, это специализированная арматура, включая предохранительную, защитную, распределительную, смесительную и т.п.

Однако с ростом автоматизации будет заметен перевод ряда типов арматуры из простых регуляторов на принудительное регулирование. Оно происходит посредством выполнения команд управления, идущих от системы автоматизации, а не только от прямых регуляторов, осуществляющих саморегулирование процесса. Таким образом, например, уже начался перевод регуляторов прямого действия на горелочном оборудовании на применение регулирующих клапанов, как правило, поворотного типа, действующих не от настроенного на определенный параметр давления МИМ (Мембранного Исполнительного Механизма), а от команды системы управления.

В предохранительной арматуре выделяется подсегмент арматуры быстрого срабатывания (быстроотсечная арматура), где применение поворотных клапанов, в большей степени поворотных заслонок, было бы наиболее эффективно.

Развитие пассивных систем безопасности, как и систем активной защиты уже приводит к долговременной тенденции замены арматуры с электроприводом на пневмоприводную арматуру. Переход к поворотной арматуре от арматуры линейно-поступательного перемещения штока в этом случае обусловлен тем, что сама конструкция поворотной арматуры предполагает выполнение командного сигнала всего лишь при повороте на 1/4. Поворот всего на 1/4 полного оборота также создает возможности для применения простых предохранительных устройств на основе поворотных шаровых кранов и поворотных заслонок, срабатывающих от повышения температуры окружающей среды на основе простого действия пружины небольшого хода. Этого невозможно достичь при использовании задвижек, или приходится значительно усложнять приводную часть арматуры.

Далее, в соответствующих разделах, приводятся основные параметры замены арматуры, наиболее часто применяемой в энергетике на поворотную арматуру. Здесь и далее в качестве примеров применения поворотной арматуры будет приводиться арматура производства Metso Automation, хорошо знакомая автору.

2.2. Регулирующая арматура

СРАВНЕНИЕ ПОВОРОТНОЙ И ЛИНЕЙНОЙ РЕГУЛИРУЮЩЕЙ АРМАТУРЫ

В энергетике широкое применение находит регулирующая арматура. До сегодняшнего дня в качестве регулирующей арматуры наиболее широко используют регулирующие вентили и задвижки. Значительную часть контуров регулирования обслуживают регуляторы давления прямого действия. В системах энергетики регулирующие клапаны обслуживают различные контуры, где регулируемым параметром выступают расход, температура, давление, концентрация и т.п.

ВЫБОР РЕГУЛИРУЮЩЕЙ АРМАТУРЫ

В технических решениях по оснащению клапанами необходимо стремиться к минимальной колебательности процесса и отсутствию отклонений от оптимального диапазона регулирования клапана. Причины высокой колебательности регулирующих контуров могут быть разные – и неправильный расчет и выбор клапана, и недостатки монтажа, и плохая настройка клапана и позиционера, помехи и чрезмерные отклонения в процессе. Дороговизна колебательности заключается в потере продукции, внеплановых остановах, снижении эффективности процесса и высоком взаимовлиянии сопряженных контуров.

Выбор регулирующих клапанов долгое время основывался на различных приблизительных оценочных методах и имеющемся опыте. Для восполнения недостатка в точном и быстром выборе разрабатываются методики расчета и выбора регулирующих клапанов. Благодаря этим методикам можно выбрать наилучший вариант клапана по точности регулирования и регулирующим свойствам для конкретных условий эксплуатации. Методика расчета основана на графиках, расходной характеристике и коэффициенте усиления установленного клапана.

ОСНОВЫ РАСЧЕТА

СОБСТВЕННАЯ ПРОПУСКНАЯ ХАРАКТЕРИСТИКА

Оптимальный выбор регулирующего клапана по размеру и типу начинается с собственной пропускной характеристики клапана. В этом отношении пропускные характеристики клапанов тщательно измеряются в различных испытательных лабораториях.

Характеристики клапана замеряются в условиях, когда перепад давления постоянен. В этом случае величина потока, проходящего через клапан «q» пропорциональна его коэффициенту пропускной способности Сv. Так как коэффициент пропускной способности клапана выражает со своей стороны эффективную величину поперечного сечения потока, то по характеристике клапана можно видеть, что эффективность поперечного сечения потока меняется в функциональной зависимости от степени открытия «h» клапана.

На рис.2.1. представлены пропускные характеристики наиболее распространенных клапанов в их функциональной зависимости от коэффициента пропускной способности Ф и степени открытия h.

Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _20.jpg

Рис. 2.1. Пропускные характеристики наиболее распространенных клапанов в их функциональной зависимости от коэффициента пропускной способности Ф и степени открытия h.

1,2,3,4, – разные условия работы клапана

РАСХОДНАЯ ХАРАКТЕРИСТИКА

На практике регулирующий клапан – это часть технологического трубопровода. Перепад давления в зоне открытия клапана редко постоянен, т.к. при росте величины потока вследствие динамических потерь давление потока на входе клапана падает, а на выходе увеличивается. Поэтому зависимость величины потока q от степени открытия клапана h (вид установочной характеристики) есть функция, как технологического трубопровода, так и собственной пропускной характеристики клапана. Влияние изменений перепада давления на регулирующий клапан, установленный в технологическом трубопроводе, показан на рис.2.2.

Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике» - _21.jpg

Рис. 2.2. Влияние изменений перепада давления на регулирующий клапан

4
{"b":"688916","o":1}