Природу технологического трубопровода описывают характеризующие коэффициенты Dр1 и Dp2, где нижними индексами определены условия потока, при которых клапан полностью открыт (f) или открыт для обеспечения максимальной величины потока (m) требуемой проектом. Коэффициенты Dpm можно рассчитать по формулам:
Dpm=dpm\dpo (1)
Dpi=dpi\dpo
Где dpo – перепад давления при закрытом клапане.
Тип технологического процесса можно рассчитать, когда известны, по меньшей мере, два различных условия потока, или известны описывающие природу трубопровода коэффициент Dpm и условия максимальной величины потока.
На рис 2.3. представлена рассчитанная по программе установочная характеристика для клапана Q –ball для одного технического решения, требующего понижения давления. В данном решении применен шаровой клапан Q-ball с верхним входом, сечение трубопровода 100 мм. По программе можно также рассчитать скорость потока на выходе и уровень шума в зоне действия регулирующего клапана в целом. Особенность использованного в данном случае решения Q- ball – чрезвычайно широкий диапазон регулирования, что выражается в очень хорошей расходной характеристике.
Рис. 2.3. Установочная характеристика для клапана Q-Ball производства Metso Automation для значительного перепада давления. Расчет по программе NELPROF
КОЭФФИЦИЕНТ УСИЛЕНИЯ
Достоинства расходной характеристики клапана в отношении возможностей и точности регулирования можно определить при помощи кривой усиления. Кривая усиления клапана описывает изменение углового коэффициента установочной характеристики в зависимости от степени открытия клапана. Усиление установленного клапана есть отношение изменения величины потока dQp к изменению степени открытия dh.
G=dQp\dh (2)
Где Qp – проходящая через клапан относительная величина потока (Q=q\qm)
По формуле 2 можно определить изменение величины потока. Изменение величины потока есть усиление, умноженное на изменение степени открытия клапана.
Усиление установленного клапана – отправной момент при выборе оптимального размера и собственной пропускной характеристики регулирующего клапана для определенного технологического решения. Выбор клапана по его внутренней характеристике необходимо проводить так, чтобы его регулировочная способность сохранялась оптимальной и неизменной независимо от изменения нагрузки в рабочем диапазоне. На практике разные участки в области регулирования стараются сделать линейными в рабочем диапазоне технологического процесса. Тогда и усиление установленного клапана будет наиболее вероятно постоянным в рабочем диапазоне технологического процесса.
Для относительного усиления установленного клапана действительно правило, согласно которому в диапазоне регулирования усиление должно быть не более 0,5, а его изменение может быть лишь немногим более 2. Если установочное усиление не отвечает названным условиям, необходимо вместе с изготовителем тщательно исследовать динамику регулирующей способности во всем диапазоне регулирования. Если усиление данного клапана слишком низкое, высокое или оно сильно колеблется в рабочем диапазоне технологического процесса, это, как правило, доставляет трудности в отношении регулирующих устройств. С другой стороны, слишком высокое усиление клапана затрудняет точность регулирования, так как для степени погрешности в величине потока клапана действительна формула: относительная степень погрешности по потоку есть усиление, умноженное на степень погрешности открытия клапана.
DQr=Gdhr. (4)
На рис. 2.4. представлена соответственно рис. 3 кривая усиления регулирующего клапана Q-ball. Из рис. 2.4 видно, что, благодаря собственной пропускной характеристике клапана Q-ball достигается почти постоянное усиление в рабочем диапазоне регулирующего клапана. Кроме того, низкое усиление означает на практике прекрасную точность регулирования.
Рис. 2.4. Кривая усиления регулирующего клапана Q-ball
Таким образом, понимая особенности процесса при протекании рабочих сред через клапан и характеристики регулирования, уже на первоначальном этапе можно добиться оптимального выбора клапана с высокими характеристиками, и, соответственно, его более высокой эффективности в работе.
Для регулирующих клапанов наиболее часто основой закона регулирования являются расчеты расхода по падению энергии. При этом основные решения основаны на расчете дросселирующего эффекта. В то же время современные подходы предполагают переход на расчеты по пропускной способности регулирующего органа. Это позволяет в значительной степени улучшить качество регулирования. Однако это предопределило и существенно более расчетный, предсказательный характер определения расходных характеристик потока. Расчетный и алгоритмический характер рассматриваемых характеристик способствовал более легкой автоматизации процесса. Таким образом, несмотря на значительно более непосредственный и простой характер расчета по эффекту дросселирования и разработки алгоритма регулирования по изменению в потерях энергии, более сложные расчетные показатели через расчет параметров расходных характеристик и пропускной способности заняли свое место в системах регулирования. Основой этой замены стало повышение качества регулирования и требование большей информативности процесса, учета множества дополнительных характеристик. Переход к информационно-измерительным системам с включением в него клапана становится более отчетливым.
Регулирующие вентили, как правило, используются на линиях с ручным управлением со стабилизированным, установившимся режимом работы. Для выполнения командного сигнала вентили часто приходится делать двухседельными, что снижает стабильность регулирования.
Качество регулирования до настоящего времени определяют по классу точности. На отечественных предприятиях используют классы точности 2,5; 4,0; 6,0, см. табл.2.2.
Табл. 2.2. Классы точности регулирующих клапанов
В существующих стандартах класс точности регулирующих клапанов с позиционером должен быть не ниже 2,5. Чтобы проконтролировать соответствие хода регулирующего клапана, определяется значение основной погрешности, порога чувствительности и вариации хода штока. Эти параметры оцениваются по ходовой характеристике регулирующего клапана на полностью собранном и отрегулированном изделии при незаполненном средой корпусе и сальнике, обеспечивающем герметичность подвижного соединения штока при условном давлении Ру. Сигнал при этом проверяется с точностью +– 0,4% от максимального значения, перемещение – с точностью +-0,5% от номинального хода штока.
Основная погрешность регулирующего клапана определяется следующим образом. На входной штуцер мембранно-исполнительного механизма (МИМ) подают управляющий воздух под определенным давлением. Диапазон изменения управляющего давления разбивают на 8-10 равных частей и при каждом его значении фиксируют положение штока. Испытание проводят при прямом и обратном ходе; для каждого значения управляющего давления находят приведенный ход, после чего определяют разность действительного и приведенного ходов.
Основную погрешность определяют как отношение, выраженное в процентах, наибольшей разности действительного и приведенного хода к номинальному ходу штока.
Δ=(Sд – Sп)\Sн) х100%