Литмир - Электронная Библиотека
A
A

Мы освободимся от этого противоречия только тем, что будем беспрестанно помещать новые члены между членами, уже различенными, и эта операция должна будет продолжаться до бесконечности. Мы могли бы подумать, что она будет остановлена, если мы представим себе некое орудие, достаточно мощное для разложения физической непрерывности на раздельные элементы, подобно тому как телескоп разлагает Млечный Путь на звезды. Но мы не можем так думать. В самом деле, инструментами мы пользуемся всегда при помощи наших чувств; так, увеличенное микроскопом изображение мы рассматриваем нашим глазом, следовательно, оно должно всегда сохранять характер зрительного ощущения, а потому сохранять и характер физической непрерывности.

Длина, рассматриваемая непосредственно, ничем не отличается от половины этой длины, удвоенной микроскопом. Целое однородно с частью; здесь заключается новое противоречие, или скорее это было бы противоречием, если бы число членов предполагалось конечным; в самом деле, ясно, что часть, которая содержит менее членов сравнительно с целым, не может быть подобной целому.

Противоречие снимается лишь тогда, когда число членов рассматривается как бесконечное; ничто, например, не мешает рассматривать совокупность целых чисел подобной совокупности четных чисел, которая представляет собою, однако, только часть всего ряда; в самом деле, каждому целому числу соответствует в этом ряду одно четное число, которым является то же число, увеличенное вдвое.

Однако разум приходит к созданию понятия о непрерывном, образованном из бесконечного числа членов, не только для того, чтобы избавиться от этого противоречия, содержащегося в эмпирических данных.

Дело обстоит совершенно так же, как для ряда целых чисел. Мы обладаем способностью понять, что единица может быть прибавлена к собранию единиц; благодаря опыту мы имеем повод упражнять эту способность и сознавать ее; но с этого момента мы чувствуем, что наше могущество не имеет предела и что мы могли бы считать бесконечно, хотя бы и имели для счета всегда только конечное число предметов,

Точно так же, как только мы пришли к идее поместить между двумя последовательными членами некоторого ряда промежуточные члены, мы пришли к выводу, что эта операция может быть продолжена беспредельно и что нет, так сказать, никакого существенного основания для остановки.

Я позволю себе упростить речь, назвав математической непрерывностью первого порядка всякую совокупность членов, образованных по тому же закону, что и последовательность соизмеримых чисел. Если мы затем поместим в ней новые промежуточные члены, следуя закону образования несоизмеримых чисел, мы получим то, что мы назовем непрерывностью второго порядка.

Вторая стадия. До сих пор мы сделали только первый шаг: мы объяснили происхождение непрерывностей первого порядка; теперь надо убедиться, почему их было еще недостаточно и почему понадобилось изобретать несоизмеримые числа.

Если мы хотим представить себе линию, то это возможно сделать, только пользуясь свойствами физической непрерывности; т. е. ее можно представить себе не иначе, как обладающей некоторой шириной. Две линии явятся для нас тогда в форме двух узких полос, и если удовольствоваться этим грубым изображением, то очевидно, что при пересечении две линии будут иметь общую часть.

Но чистый геометр делает еще одно усилие: не отказываясь совершенно от помощи своих чувств, он хочет дойти до понятия линии без ширины, точки без протяжения. Он может достичь этого, только рассматривая линию как предел, к которому стремится полоса, все более и более суживающаяся, и точку – как предел, к которому стремится площадь, все более и более уменьшающаяся. Тогда наши две полосы, как бы узки они ни были, всегда будут иметь общую площадь, тем меньшую, чем меньше будет их ширина, и пределом ее будет то, что чистый геометр называет точкой.

Вот почему говорят, что две пересекающиеся линии имеют общую точку, и эта истина представляется интуитивной.

Но она содержала бы противоречие, если бы понимать линии как непрерывности первого порядка, т. е. если на линиях, проводимых геометром, должны находиться только точки, координаты которых – рациональные числа. Противоречие станет очевидным, лишь только установят, например, существование прямых и кругов.

В самом деле, ясно, что если бы в качестве действительных рассматривались только точки с соизмеримыми координатами, то круг, вписанный в квадрат, и диагональ этого квадрата не пересекались бы, потому что координаты точки их пересечения несоизмеримы.

Этого еще недостаточно, потому что таким образом мы имели бы не все несоизмеримые числа, а только некоторые из них.

Но представим себе прямую, разделенную на две полупрямые. Каждая из этих полупрямых явится в нашем воображении как полоса известной ширины; притом эти полосы будут покрывать одна другую, потому что между ними не должно быть никакого промежутка. Когда мы пожелаем воображать наши полосы все более и более узкими, общая часть представится нам точкой, которая будет существовать постоянно; так что мы допустим в качестве интуитивной истины, что если прямая разделена на две полупрямые, то общая граница этих двух прямых есть точка; мы узнаем здесь концепцию Кронекера, согласно которой несоизмеримое число рассматривается как граница, общая двум классам рациональных чисел.

Таково происхождение непрерывности второго порядка, которая и является математической непрерывностью в собственном смысле.

Вывод. В итоге можно сказать, что разум обладает способностью создавать символы; благодаря этой способности он построил математическую непрерывность, которая представляет собой только особую систему символов. Его могущество ограничено лишь необходимостью избегать всякого противоречия; однако разум пользуется своей силой исключительно в том случае, когда опыт доставляет ему для этого основание.

В занимающем нас случае этим основанием было понятие физической непрерывности, выведенное из непосредственных данных чувственного восприятия.

Но это понятие приводит к ряду противоречий, от которых надо последовательно освобождаться. Таким образом, мы вынуждены воображать все более и более усложненную систему символов. Та система, на которой мы, наконец, останавливаемся, не только свободна от внутреннего противоречия – ведь она уже оказалась такой на всех пройденных этапах, – но она также не противоречит различным так называемым интуитивным положениям, которые извлечены из более или менее обработанных эмпирических понятий.

Измеримая величина. Величины, которые мы изучали до сих пор, не были измеримыми, мы умели сказать, которая из двух величин является большей, но в два ли, в три ли раза она больше – этого мы не умели сказать.

В самом деле, до сих пор я занимался только порядком, в котором наши члены были размещены. Но для большинства применений этого недостаточно. Надо научиться сравнивать промежутки, отделяющие два каких-нибудь члена. Только при этом условии непрерывность делается измеримой и в ней оказывается возможным применить арифметические операции.

Это можно сделать только при помощи нового и особого соглашения. Условливаются, что в таком-то случае интервал, заключенный между членами А и В, равен интервалу, отделяющему С от D. Так, в начале нашей работы мы исходили из последовательности целых чисел и предполагали, что между двумя последовательными членами ее помещены n промежуточных; эти-то новые члены будут теперь в силу соглашения рассматриваться как равноотстоящие.

Отсюда-то и вытекает способ определения сложения двух величин; так, если интервал АВ по определению равен интервалу CD, то интервал AD по определению будет суммой интервалов АВ и CD.

Это определение в весьма значительной мере произвольно. Однако оно произвольно не вполне. Оно подчинено известным соглашениям, например, правилам коммутативности и ассоциативности сложения. Но как только выбранное определение удовлетворяет этим правилам, выбор делается безразличным, а более точное определение – бесполезным.

6
{"b":"671299","o":1}