Литмир - Электронная Библиотека
A
A

Но если мы без труда допустили это, когда речь шла о законах астрономии, почему это должно смущать, если дело касается механики?

Мы видели, что координаты тел определяются дифференциальными уравнениями второго порядка, и то же самое имеет место для разностей этих координат. Это – то, что мы назвали обобщенным принципом инерции и принципом относительного движения.

Если бы расстояния этих тел определялись также дифференциальными уравнениями второго порядка, то, кажется, ум должен бы быть вполне удовлетворен. В какой мере он получает это удовлетворение и почему он им не довольствуется?

Чтобы дать себе в этом отчет, лучше всего взять простой пример. Вообразим систему, аналогичную нашей Солнечной системе, но такую, что из нее нельзя было бы видеть неподвижных звезд, не принадлежащих к этой системе, так что астрономы могли бы наблюдать только взаимные расстояния планет и Солнца, но не абсолютные долготы планет. Если мы выведем непосредственно из закона Ньютона дифференциальные уравнения, определяющие изменение этих расстояний, то эти уравнения не будут второго порядка. Я хочу сказать, что если бы, кроме закона Ньютона, были известны начальные значения этих расстояний и их производных по времени, то этого было бы достаточно для определения значений тех же расстояний для какого-нибудь последующего момента. Недоставало бы еще одного данного, и этим данным могло бы быть, например, то, что астрономы называют константой площадей.

Но здесь можно стать на две различные точки зрения; мы можем различать два рода констант. В глазах физика мир сводится к ряду явлений, зависящих единственно, с одной стороны, от начальных явлений, с другой – от законов, связывающих последующие явления с предыдущими. Если теперь наблюдение откроет нам, что некоторая величина есть константа, то нам представится выбор между двумя точками зрения.

Или мы допустим, что существует закон, требующий неизменяемости этой величины, но дело случая, что она в начальный момент имела именно такое значение, а не иное, – значение, которое она должна была потом сохранять. Такую величину можно было бы назвать тогда случайной константой.

Или, напротив, мы допустим, что существует закон природы, сообщающий этой величине именно такое значение, а не иное. Здесь мы будем иметь то, что можно назвать существенной константой.

Например, в силу законов Ньютона время обращения Земли должно быть постоянно. Но если оно равно 366 звездным суткам с дробью, а не 300 или 400, то это – результат какой-то неизвестной мне начальной случайности. Это – случайная константа. Если, напротив, показатель степени расстояния, входящий в выражение гравитационной силы, равен 2, а не 3, то это не случайно – этого требует закон Ньютона. Это – существенная константа.

Я не знаю, будет ли законно само по себе придавать какое-то значение случайности и не является ли такое разграничение искусственным; во всяком случае, пока в природе существуют тайны, оно будет применяться с широким произволом, всегда оставаясь ненадежным.

Что касается константы площадей, то мы привыкли рассматривать ее как случайную. Так ли поступили бы наши воображаемые астрономы? Если бы они имели возможность сравнивать две различные солнечные системы, то у них появилась бы идея, что эта константа может иметь различные значения; но я как раз предположил вначале, что их система изолирована и они не могли наблюдать никакого светила, не принадлежащего к их системе. В этих условиях они могли бы знать единственную константу, которая имела бы единственное, абсолютно неизменяемое значение; без сомнения, они были бы склонны рассматривать ее как константу существенную.

Выскажу попутно несколько слов в предупреждение возражений: обитатели нашего воображаемого мира не могли бы ни наблюдать, ни определить константу площадей, как это делаем мы, потому что абсолютные долготы были бы им недоступны; но это не помешало бы им скоро подметить определенную константу, которая естественно входила бы в их уравнения и которая была бы не чем иным, как тем, что мы называем константой площадей.

Но тогда бы имело место следующее. Если рассматривать константу площадей как существенную, как обусловленную законом природы, то для вычисления расстояний планет в любой момент достаточно знать начальные значения этих расстояний и их первых производных. С этой новой точки зрения расстояния будут определяться дифференциальными уравнениями второго порядка.

Однако был ли бы ум этих астрономов вполне удовлетворен? Я не думаю; прежде всего, они скоро заметили бы, что, продифференцировав свои уравнения и таким образом повысив их порядок, они привели бы их к более простой форме. В особенности они были бы поражены трудностью, связанной с симметрией. Пришлось бы допускать различные законы, смотря по тому, представляет ли совокупность планет фигуру какого-либо определенного многогранника, в частности симметричного многогранника; этого следствия можно было бы избегнуть, только рассматривая константу площадей как случайную.

Я взял довольно частный пример, вообразив астрономов, которые совсем не занимаются земной механикой и кругозор которых ограничен Солнечной системой. Но наши заключения приложимы ко всем случаям. Наша Вселенная шире по сравнению с их миром, потому что у нас есть неподвижные звезды, но она все же ограничена, и поэтому мы могли бы так же рассуждать о нашей Вселенной, взятой в целом, как эти астрономы – о своей Солнечной системе.

В конце концов, как из всего этого видно, пришлось бы заключить, что порядок уравнений, определяющих расстояния, выше второго. Почему бы это могло смущать нас, почему мы находим вполне естественным, что ряд явлений зависит от начальных значений первых производных расстояний, и в то же время не решаемся допустить, что они могут зависеть от начальных значений вторых производных? Это может быть только следствием известных привычек, выработанных в нашем сознании постоянным изучением обобщенного принципа инерции и его следствий.

Значения расстояний во всякий момент зависят от их начальных значений, начальных значений их первых производных и еще от чего-то другого. Чем же является это другое?

Если не хотят признать в этом просто одну из вторых производных, то остается только выбор гипотез. Обыкновенно полагают, что это «другое» есть абсолютная ориентация Вселенной в пространстве или быстрота, с которой ориентация изменяется. Возможно и даже несомненно, что такая гипотеза является самой удобной для геометра; но она никак не самая удовлетворительная с точки зрения философа, потому что такой ориентации не существует.

Можно допустить, что это «другое» есть положение или скорость какого-нибудь невидимого тела: так и поступали те, которые даже дали этому телу название «альфа-тело», хотя нам и не суждено ничего знать об этом теле, кроме его названия. Это – уловка, совершенно аналогичная той, о которой я говорил в конце параграфа, посвященного моим размышлениям о принципе инерции.

Однако в конечном счете указанные трудности имеют искусственный характер. Все, что необходимо, – это то, чтобы будущие показания наших инструментов определялись только теми показаниями, которые они нам дали или могли дать прежде. Но в этом отношении мы можем быть спокойны.

Глава VIII. Энергия и термодинамика

Энергетическая система. Трудности, возникшие в классической механике, побудили некоторые умы отдать предпочтение новой системе – так называемой энергетике. Энергетическая система получила свое начало вслед за открытием принципа сохранения энергии. Окончательная форма была ей дана Гельмгольцем.

Начнем с определения двух величин, которые играют фундаментальную роль в этой теории. Это следующие величины: во-первых, кинетическая энергия, или живая сила; во-вторых, потенциальная энергия.

Все перемены, какие могут происходить с телами природы, управляются двумя экспериментальными законами:

1. Сумма кинетической энергии и потенциальной энергии не меняется. Это – принцип сохранения энергии.

23
{"b":"671299","o":1}