Литмир - Электронная Библиотека
A
A

Можно спорить о том, насколько плодотворным является термин «вироцель» для углубленного понимания сути вируса и надо ли считать вироцель самостоятельной биологической сущностью. Мне эта идея представляется сомнительной. Концепция вироцеля была развита некоторыми учеными для обоснования возможности того, что некоторые вирусы (это обсуждается в главе 8) могли произойти от ныне вымершего четвертого живого царства. Эти гипотезы надо тихо похоронить. Самое лучшее – это признать, что заложенная в вирусе информация реализует свой потенциал и ближе всего подходит к живому состоянию, когда она использует метаболические функции клетки-хозяина. Тем не менее передающаяся от клетки к клетке эгоистичная и независимо развивающаяся генетическая информация – это и есть то, что составляет суть вируса.

Возникновение эгоистического репликатора

Сохранят ли все эти аргументы свою силу, если мы попытаемся рассмотреть самые ранние этапы эволюции и разобраться в том, как именно возникло царство вирусов. Ученые согласны в том, что вирусы возникли до того, как началась эволюция истинных клеточных форм (Koonin, Dolja, 2014). Критериям естественного отбора впервые, по-видимому, соответствовали предковые формы генетических элементов, вероятно на основе РНК, когда у них развилась способность к саморепликации. Предположительно, процесс, включающий предрасположенную к ошибкам репликацию, связывание и обмен простых элементов с формированием более сложных видов, и стал объектом естественного отбора. Можно представить, что вначале было много репликаторов, составленных из различных генетических элементов, которые примитивно реплицировались разными способами. Естественный отбор вступил в игру, когда эти репликаторы начали конкурировать за ресурсы, возможно, доступные химические строительные блоки, или когда условия изменились в пользу того или иного класса репликаторов. Эта ситуация могла вскрыть разницу в приспособленности форм репликации и благоприятствовать самым успешным формам, и, таким образом, осуществлять селекцию определенных репликаторов. Давайте на минуту представим себе, что доклеточные репликаторы являлись первыми, предковыми формами жизни. Но в таком случае как могли возникнуть вирусы? Согласно самой популярной гипотезе, они отделялись от этих более ранних предшественников по мере их структурного и функционального усложнения. Паразиты, скорее всего, возникли как неспособные к репликации элементы, которые тем не менее могли использовать химические свойства репликаторов, за счет чего им удавалось реплицироваться самим. После этого первичного становления паразитических отношений естественный отбор получил возможность независимо действовать как на паразитические, неавтономные, репликаторы, так и на автономные. Таким образом, сформировались две отдельные линии. Вероятно, очень смело предполагать, что паразитические неавтономные репликаторы, предшественники вирусов, на самом деле, начинали как члены популяции репликаторов, но отделились от них, утратив часть информации, что привело к появлению дефектных репликаторов, ставших облигатными паразитами, использующими те же механизмы, что и автономные репликаторы. По логике этого рассуждения мы должны заключить, что первые вирусы возникли как ранние предшественники жизненных форм, но утратили способность к автономной репликации и начали развиваться параллельно со своими хозяевами, которые в конечном счете приобрели весь тот антураж, который мы сегодня считаем жизнью.

Империя вирусов

Заканчивая введение, в котором вирусы представлены как эгоисты и носители чисто паразитической генетической информации, я должен отметить, что несмотря на то, что вирусы, на самом деле, являются косными во всех отношениях, они тем не менее уникальны в своей способности заново, в новом обличье, переделывать себя при каждом следующем инфицировании клетки-хозяина, и процесс этот начинается лишь с плана, закодированного в цепях ДНК или РНК. Живые клетки неспособны на такие подвиги. Несмотря на то что мы обычно ассоциируем естественный отбор с эволюцией живых организмов, вирусы, эти инертные биологические сущности, в конечном счете являются результатом естественного отбора, то есть они развивались вместе с жизненными формами и стали самыми многочисленными и разнообразными репликаторами на Земле. Как мы увидим, способность к быстрой эволюционной адаптации позволила вирусам проникнуть во все домены и царства жизни, где они стали мощными катализаторами эволюции своих хозяев. Это глубокое влияние на формирование и существование экосистем нашей планеты можно сравнить с влиянием великих империй прошлого, которые оказали глубокое воздействие на географию и культуру всего света. «Вирусная империя» может быть косной материей, неспособной к вдохновению в отсутствие помощи от живой клетки-хозяина, но нельзя недооценивать роль этой империи. Потенциал вирусов продолжать развитие в привычной эгоистичной манере, не задумываясь о судьбах человечества, сохраняется и сегодня. Для вирусов эта работа продолжается в своем бесконечном развитии.

Глава 2

Вирусы, гены и экосистемы

Наше подробное рассмотрение виросферы, приведенное в предыдущей главе, демонстрирует все изящество и сложность этих мельчайших переносчиков генетической информации. Тем не менее мы не коснулись разнообразного набора стратегий репликации и взаимоотношений вирусов с клетками-хозяевами и их популяциями. Ничего не было сказано и об эволюционных процессах, сформировавших вирусы, и о том, как вирусный метагеном повлиял на эволюцию живых организмов во всех доменах жизни, включая и экосистемы. Здесь мы постараемся восполнить этот пробел.

Начнем мы с самого многочисленного отряда вирусов, внесших самый весомый вклад в формирование вирусного метагенома, – отряда фагов. Эти вирусы обладают древними корнями и инфицируют самые примитивные, но доказавшие свою успешность генетические линии – бактерии и простейших. Благодаря давней истории своих взаимоотношений эти микроорганизмы представляют собой самые элегантные примеры совместной эволюции вирусов и живых клеток. Хочу еще раз пояснить, что на следующих страницах мы будем просто рассматривать мир вирусов и его отношения с живыми клетками в том виде, какой оно имеет в наше время. Вероятно, мы можем порассуждать о том, какими эти отношения были раньше, но не возьмемся предсказывать, какими они станут в будущем. Разнообразие вирусного метагенома, спрятанное в генетической «темной материи», – это строгое напоминание о том, что до сих пор существует множество возможностей для эволюционных изменений, катализируемых миром вирусов. Эти изменения будут проявляться ветвлениями самих вирусов, но, определенно, это ветвление и изменчивость затронут и их хозяев, и экосистемы, населенные этими хозяевами.

Образ жизни и жизненные циклы

За счет своей многочисленности в природной среде фаги играют важную роль в формировании глобальных экосистем. Это верно в отношении хвостатых фагов, содержащих двухцепочечную ДНК. Эти фаги составляют очень крупный и разнообразный порядок вирусов, метко названный Caudivirales (хвостатые вирусы). Хвостатые фаги с двойной цепью ДНК – это одна из старейших известных групп ДНК-содержащих вирусов. Эти вирусы, поражающие как бактерии, так и простейших (Krupovic et al., 2011), широко представлены в вирусных метагеномах всех известных на сегодняшний день экосистем. У всех этих вирусов общий геном, состоящий из двойной цепи ДНК, заключенной в крошечный икосаэдрический капсид диаметром меньше одной десятой микрометра, снабженный шиповидным выступом. Эта морфологическая особенность служит основанием для объединения всех этих вирусов в один порядок – Caudovirales. Эта группа невероятно разнообразна; гены со сходными функциями часто сильно отличаются по аминокислотному (так в тексте! вероятно, надо писать «нуклеотидному». – Прим. перев.) составу, который изменился по ходу эволюции от далеких общих предков. Более того, размер генома варьирует от менее чем 18 000 пар оснований, которых едва хватает на кодирование 30 белков, до почти полумиллиона пар оснований, которых вполне достаточно для кодирования 675 белков. Очень мелкие фаги кодируют лишь самое минимальное оснащение для репликации в клетке-хозяине. Эти мелкие фаги можно уподобить дрегстеру, которому для скорости оставлено только шасси, в то время как фаги с крупными геномами можно уподобить седанам представительского класса, снабженным самыми разнообразными дополнительными приспособлениями. Эти различия являются всего лишь результатом радикально отличающихся друг от друга траекторий эволюции в разных линиях фагов с двойными цепями ДНК, претерпевавших эту эволюцию в клетках разных хозяев. Отсюда мы можем заключить, что дополнительные гены в геномах более крупных фагов создавали для них какое-то конкурентное преимущество. Дополнительные функции, которыми они в результате стали обладать, видимо, улучшили репликативную успешность соответствующих фаговых линий в их индивидуальных нишах.

6
{"b":"634004","o":1}