На рубеже двадцатого столетия у ученых не было подходящих инструментов для того, чтобы описать физическую природу вирусов, если не считать фильтра Чемберленда. Все понимали, что возбудителями были мельчайшие организмы, способные проходить сквозь крошечные поры фарфорового фильтра. То есть определенно говорить можно было только о размерах частиц. Потребовалось еще сорок лет для того, чтобы выделить сами частицы вируса табачной мозаики, получившие название «ферментоподобного белка». Затем, после уточнения состава, их назвали нуклеопротеинами – частицами, состоящими из белка и нуклеиновых кислот.
Приблизительно через двадцать лет после идентификации вируса табака, в результате совместных усилий многих ученых были, наконец, открыты вирусы, поражающие прокариотические клетки. Английский врач Фредерик Туорт изучал бактерию из семейства стафилококков, так как она часто загрязняла пузыри коровьей оспы, из которых Туорт собирал материал для изготовления противооспенной вакцины. Исследуя бактериальные культуры, он заметил отчетливые пятна на поверхности мелких бактериальных колоний, растущих на питательной среде. Туорт совершенно правильно интерпретировал эти изменения как результат разрушения бактериальных клеток, то есть заболевания микроорганизма. Туорт обнаружил, что эту «болезнь» можно переносить из колонии в колонию и что инфекционный агент легко проникал через фарфоровый фильтр, так же как возбудитель табачной мозаики в опытах Бейеринка. Сам Туорт считал, что вызывающим болезнь началом был, вероятно, фермент или токсин, это начало соответствовало всем признакам вирусов (Twort, 1915).
Возможно, что Туорт и сам не вполне осознал значение своего открытия, но зато его осознал Феликс д’Эрелль, канадский ученый, работавший в Пастеровском институте в Париже. Д’Эрелль сумел продвинуться еще на шаг вперед в исследовании вирусов, поражающих бактерии. Он наблюдал фильтруемый «антагонистический микроб», который убивал возбудителя дизентерии шигеллу, делая прозрачными бульонные культуры этого микроорганизма. Д’Эрелль писал: «Исчезновение дизентерийных бацилл совпадает с введением невидимого микроба… являющегося облигатным бактериофагом» (D’Hérelle, 1917). Это было первое употребление термина «бактериофаг» в научной литературе (бактериофаг в переводе с греческого означает «пожирающий бактерии»). Д’Эрелль открыл то, что, как мы теперь знаем, является многочисленной группой вирусов. Эти вирусы являются паразитами прокариот – организмов, составлявших большинство форм жизни в архейскую эпоху.
Ивановский, Бейеринк и Туорт ничего не знали об истинной природе инфекционного агента – был ли он бактерией, ферментом или токсином, – но сегодня, в результате многочисленных биохимических, физических и молекулярных исследований было получено подробное описание вирусов. В словарях вирусы определяются так: «Инфекционный агент, который в типичных случаях состоит из молекулы нуклеиновой кислоты в белковой оболочке, невидимый в световом микроскопе вследствие своей малости и способный размножаться только в живых клетках организма-хозяина». Это, в принципе, верное определение, тем не менее оно не лишено недостатков. Использование оборота «в типичных случаях» оказалось пророческим. Действительно, в большинстве случаев вирусы соответствуют такому определению, но есть и достаточно заметные исключения. Некоторые вирусы превосходно обходятся без белковой оболочки, другие размерами превосходят иные бактерии (см. главу 8). Для того чтобы сформулировать признаки фундаментальной природы вирусов, надо исследовать более исчерпывающее их определение.
Виросфера и ее метагеном
Виросфера – это совокупность всех вирусов во всех экосистемах и во всех организмах-хозяевах биосферы. В принципе, когда мы произносим слово «вирус», мы думаем о вирусной частице и содержащейся в ней нуклеиновой кислоте. Программа создания вирусной частицы содержится в ней в виде нуклеиновых кислот – рибонуклеиновой или дезоксирибонуклеиновой, которые являются полимерами либо рибонуклеотидов, либо дезоксирибонуклеотидов. Генетический код вируса, представленный этими нуклеиновыми кислотами, содержит информационный фундамент уникальной идентичности каждого вируса. Так же как различные виды живых организмов имеют различные генетические программы («чертежи»), закодированные в последовательности нуклеотидов, имеют их и вирусы. В наше время визуализировать вирусы можно с помощью электронного микроскопа. Таким способом часто выявляются разные вирусы, имеющие настолько схожие размеры и форму, что их невозможно различить по этим признакам. Уникальная идентичность каждой частицы заложена в ее геноме, а геномы у разных частиц могут отличаться друг от друга, причем иногда весьма сильно. Истинное разнообразие царства вирусов можно оценить, только составив каталог их генетического содержимого – их штрих-кодов – и сравнив его между собой. По этой причине виросферу стоит понимать не только как совокупность различных видов вирусов, но как совокупность их генетического информационного содержания – как вирусный метагеном.
Метагеном сводит в один каталог все совокупные геномы всех организмов, которые можно получить в пробе окружающей среды. «Проба окружающей среды» может представлять собой один грамм почвы, миллилитр морской воды или какой-то организм, и каждая из этих проб является отдельной экосистемой. В наиболее общей форме термин «метагеном» включает в себя геномы биосферы, т. е. геномную информацию обо всех живых организмах и их вирусах. Человеческий метагеном включает в себя геномы, с ним связанные, то есть не только собственные геномные последовательности, но и таковые всех организмов, составляющих микробиомы человека. К ним относятся симбиотические бактериальные клетки и клетки простейших, занимающие все наши наружные поверхности: кожу, слизистую оболочку кишечника, носовую и ротовую полость и половые тракты. Человеческий виром – это совокупность вирусов, инфицирующих клетки нашего тела и клетки наших микробных спутников. Все гены этих структур считаются их метагеномом.
Исследование метагеномов стало возможным благодаря технологическому прогрессу в молекулярной биологии. Такие исследования зиждутся на нашей способности читать и интерпретировать нуклеотидные последовательности генетического материала организмов и вирусов в каждой данной пробе. До наступления эры технологического прогресса распознавание и идентификация микроорганизмов и вирусов в каждой данной пробе были ограничены теми микроорганизмами и вирусами, которые можно было вырастить в культуре или рассмотреть под микроскопом. Сегодня выявление нуклеотидных последовательностей даже в крошечных пробах окружающей среды или биологического материала можно использовать как отпечатки пальцев, для надежной идентификации микробов и вирусов.
В течение последнего десятилетия ученые использовали эти инструменты для исследования возможной связи между составом человеческого микробиома, состоянием здоровья и определенными заболеваниями. Было установлено, что сообщество микроорганизмов состоит из 75–200 триллионов микробов – это число вполне сопоставимо с 100 триллионами клеток человеческого организма. Таким же поразительным является тот факт, что на каждый триллион микробных клеток приходится в десять раз больше вирусов! Эта популяция вирусов – в большинстве своем бактериофаги (для краткости мы в дальнейшем будем именовать их фагами) – является главной частью человеческого вирома. Остальные представители вирома – это вирусы, инфицирующие клетки нашего собственного организма. Исследования показывают, что от взаимодействия этих трех частей – человеческого организма, микробиома и вирома – главным образом зависит состояние нашего здоровья и восприимчивость к заболеваниям, хотя детали этого взаимодействия пока малопонятны.
Ключевыми методами в стремительно развивающейся отрасли метагеномики являются новейшие методы секвенирования ДНК и создание компьютерных моделей. Ученые могут определить последовательность нуклеотидов в следовых количествах ДНК множества организмов в единственной пробе. Теперь нет необходимости раздельно культивировать микроорганизмы и выделять ДНК из каждого из них. Параллельное секвенирование позволяет определять последовательности нуклеотидов в разных ДНК одновременно. Применяя сложные биоинформационные алгоритмы, можно определять различные последовательности ДНК и их относительный избыток в пробе. С тех пор как отпала необходимость культивироватяь организмы для того, чтобы охарактеризовать и классифицировать их геномную последовательность, был преодолен главный барьер на пути исследования биологических свойств нашего микробиома. Действительно, несмотря на то что подавляющее большинство микробных видов не могут быть в наше время культивированы вне организма человека, параллельное секвенирование позволяет идентифицировать присутствие микроорганизмов в нашем теле и их относительное количество или относительный избыток в микробиоме кишечника. Облегчает этот анализ то, что всем без исключения клеточным формам, содержащим хромосомы, в которых закодирована генетическая программа генов, необходимы особые структуры – рибосомы. Рибосомы – это биологические машины, отвечающие за интерпретацию генетических последовательностей мРНК (мессенджер-РНК), по шаблонам которых из аминокислот синтезируются белки. Гены рибосомной РНК (присутствующие в 16S субъединице рибосомы) – рРНК, содержащиеся в рибосомах прокариот, являются весьма консервативными структурами, сохранившимися в ходе эволюции. Небольшие вариации последовательностей в этих весьма консервативных генах позволяют точно проследить филогенетические взаимоотношения между разными видами бактерий. Сравнивая эти уникальные «отпечатки пальцев» последовательностей рРНК с последовательностями ДНК, хранящимися в геномных базах данных, ученые быстро идентифицируют виды бактерий или простейших, обнаруженных в данной пробе. Отношение частоты определенной последовательности нуклеотидов в генах рРНК к ее частоте в генах ДНК указывает на относительный избыток этой последовательности в пробе.