Литмир - Электронная Библиотека
Содержание  
A
A

Возьмите проблему злокачественного роста. Нельзя сомневаться в величайшей актуальности и практической важности этой проблемы. Из того, что мы знаем о раковой клетке, можно заключить, что эти клетки утрачивают связь с соседними клетками, размножаются неудержимо, бесконтрольно и образуют опухоль.

Что же удерживает клетки в норме, какова природа той «дисциплины» размножения, которой подчиняются нормальные клетки? Это, очевидно, проблема формирования ткани органа, то есть проблема развития, дифференцировки. Раковые клетки легко отрываются от опухоли, попадают в кровь и разносятся по всему организму. Так возникают метастазы, то есть новые опухоли. Это происходит в результате особых свойств поверхности раковой клетки — в отличие от нормальных клеток раковые клетки связаны между собой гораздо слабее. А это происходит в результате изменения структуры и свойств поверхности раковых клеток. Изменения же поверхности клетки есть результат изменения состава ее белков.

Следовательно, идет нарушение синтеза белков в результате нарушения регуляции работы хромосом. Для того чтобы избавить организм от опухоли, ее удаляют хирургическим путем или убивают раковые клетки рентгеновскими лучами или химическими веществами. Но не всегда удается удалить опухоль так, чтобы ни одна раковая клетка не осталась в организме. При облучении рентгеновскими лучами и действии химиотерапевтическими препаратами также нет уверенности, что удастся убить все раковые клетки. А при увеличении доз этих агентов гибнут и нормальные клетки.

Таким образом, ясно, что, для того чтобы понять причины возникновения рака, его природу, найти средства для его предупреждения и эффективного лечения, нужно знать хорошо природу этих клеток. Для решения этой проблемы разработана программа исследований, осуществляемая под эгидой научного совета АН СССР по проблемам цитологии. Для решения ее привлекаются специалисты разных областей знания. Планируется развертывание исследований всего спектра изменений, возникающих в клетке при воздействии канцерогенов и вирусов, изучение иммунохимических и цитогенетических характеристик злокачественных клеток, устойчивости и репарации клеток и клеточных структур. Несомненно, что разработка целенаправленных мероприятий, их организация и координация не простое дело. Но эти задачи уже стоят перед учеными, и на их решение необходимо направить максимальные, хорошо продуманные и взаимно увязанные усилия.

Указать, когда будут достигнуты решающие успехи в этой области, трудно. Прогнозы в науке вообще смущают ученых. Я приведу в связи с этим один пример. В начале нашего века выступил с большой статьей видный физиолог профессор Бунге и, говоря о нерешенных проблемах жизни, остановился на самой великой загадке ее, на загадке наследственности. Бунге сказал так: «Известен факт, что с помощью сперматозоида, от этой маленькой клетки, 500 миллионов которых занимают объем едва ли 1 куб. см, от отца к сыну передаются все духовные и телесные особенности. Я думаю, что многие тысячелетия пройдут над поколениями людского рода, прежде чем только первый шаг будет сделан к разрешению этой загадки». Но профессор Бунге оказался плохим пророком. Для разрешения этой великой загадки понадобились не тысячелетия, а всего 50 с небольшим лет. Так что лучше не заниматься прогнозами, а больше и энергичнее работать.

Д. Г. Кнорре, член-корреспондент АН СССР

К управлению наследственностью

Четверо из каждой сотни людей рождаются с наследственными болезнями. Болезни эти до сих пор лечатся с большим трудом, а до недавнего времени и совсем не поддавались лечению. Вот, например, фенилкетонурия. В организме больного не синтезируется фермент, перерабатывающий аминокислоту, фенил-аланин. В результате ребенок вырастает слабоумным. Оказалось, что если такого ребенка определенное время кормить пищей, в которой фенилаланина нет, то он вырастает вполне здоровым. А вот дети у него могут родиться больными.

Сравним это со следующей картиной. Завод выпускает машины, собранные по неверному чертежу. Каждую из таких машин можно исправить, но несравненно лучше было бы внести исправление в исходный чертеж. Тогда с заводского конвейера будут сходить бездефектные машины. Так вот, исправлять наследственность на уровне чертежа, то есть на уровне зародышевой клетки, мы пока не умеем. Во многих случаях мы пока вообще не в состоянии помочь такому больному, даже зная причину болезни. Например, распространенная у некоторых африканских народов серповидноклеточная анемия (белокровие) объясняется тем, что организм больного производит гемоглобин, отличающийся от нормального всего-навсего одним из аминокислотных остатков. Причина известна, но лечения этой болезни пока нет.

Лишь в самое последнее время наметились пути решения проблемы управления наследственностью. Известно, что наследственная информация записана в молекулах ДНК. Каждый знак генетического кода составляется из нуклеотидов, собранных в определенном порядке.

Но почему именно такая структура определяет данные функции, пока неясно. Носить часы или смотреть телевизор еще недостаточно для того, чтобы уметь разобраться в их устройстве, чтобы понимать, для чего нужны именно данное колесико в часах или данная радиолампа в телевизоре. А тут перед нами молекулярная «машина» клетки, неизмеримо более сложная, чем самое сложное техническое устройство. Мы уже видим, как она работает, но пока еще не знаем, почему так, а не иначе.

Чтобы сделать следующий шаг в познании секретов жизни, нужно связать функцию и структуру каждой детали — молекулы в «машине» клетки. Одни ученые пытаются решить эту задачу, сравнивая молекулы различной структуры. Так, разбирая несколько замков различной конструкции и подбирая свой ключ к каждому из них, можно догадаться, как же эти замки действуют.

Второй путь — более активный — называется методом химической модификации. Если химически изменять каждый участок молекулы, звено за звеном, то можно увидеть, изменение какого звена связано с изменением функций всей молекулы. По характеру этого изменения можно судить о том, какая именно химическая структура определяет данные функции. Если же изменение того или иного звена не приводит к изменению функций, то, следовательно, данный участок молекулы в выполнении этой функции не участвует.

На этот метод сейчас возлагаются наибольшие надежды. Однако не нужно думать, что это очень простое дело. Большинство современных химических реагентов действуют сразу на два или даже на три азотистых основания в молекуле нуклеиновых кислот. А ведь нужно подействовать только на одно азотистое основание, не затронув других (всего их, как известно, четыре).

Многого здесь ученые уже добились. Так, в Институте химии природных соединений АН СССР член-корреспондент АН СССР Н. К. Кочетков и доктор химических наук Э. И. Будовский нашли химическое вещество, которое действует только на одно из азотистых оснований (цитозин). Но и этого оказалось мало. Ведь каждая молекула нуклеиновой кислоты, даже такой сравнительно простой, как т-РНК, содержит большое число одинаковых азотистых оснований (валиновая т-РНК, например, содержит 19 остатков цитозина). Одинаковые остатки, конечно, неразличимы по своим химическим свойствам, однако, находясь в разных участках молекулы нуклеиновой кислоты, они выполняют, по-видимому, различные функции.

А нельзя ли создать такие химические реагенты, которые будут действовать избирательно — только на азотистые основания, находящиеся в окружении определенных соседей?

Такие реагенты уже созданы. Это небольшие кусочки цепи нуклеиновой кислоты, к которой присоединена активная химическая группа. Напомним, что молекула ДНК состоит из двух спиралей, соединенных водородными связями. При делении клетки эти две спирали молекулы ДНК расходятся, и каждая из них достраивает себе вторую. Как известно, в молекуле ДНК порядок азотистых оснований в одной спирали строго определяет порядок их и в другой, например против аденина может стоять только тимин. Поэтому когда спирали расходятся, то напротив каждого аденина в одной спирали становится тимин в другой, а напротив тимина, соответственно, становится аденин.

60
{"b":"580503","o":1}