В 1810 г. девятнадцатилетний Бэбидж поступил в Тринити-колледж Кембриджского университета. В колледже, к своему удивлению, Ч. Бэбидж обнаружил, что он знает математику лучше своих сверстников. Иногда своими вопросами он ставил в тупик преподавателей.
Чарльз был общительным человеком и имел большой круг знакомых, среди которых были молодые люди с довольно разносторонними интересами: любители и математики, и шахмат, и верховой езды и т. п. Наиболее близкими его друзьями стали Джон Гершель (1792—1871), сын знаменитого астронома В. Гершеля, и Джордж Пикок (1791—1858). Друзья заключили соглашение «приложить все усилия, чтобы оставить мир мудрее, чем они нашли его».
В это время математика в Великобритании находилась в довольно критическом состоянии. Это был период интеллектуальной изоляции Англии в математике, который начал проявляться еще с середины XVIII в. Одной из причин такого состояния было преклонение перед научными заслугами И. Ньютона (1643—1727), что порождало шовинистические настроения среди ученых и пренебрежительное отношение к математическим достижениям континентальной Европы. В результате математику в Англии изучали плохо и она не пользовалась уважением. Студенты предпочитали заниматься юриспруденцией, медициной, богословием, но не математикой. Серьезные работы по математике появлялись редко.
В 1812 г. три друга (Бэбидж, Гершель и Пикок) совместно с другими молодыми кембриджскими математиками основали «Аналитическое общество», организаций которого явилась поворотным пунктом для всей британской математики. Вначале общество ставило перед собой скромные цели. Прежде всего необходимо было ввести и распространить в Англии обозначения (символику) в математическом анализе, предложенные Г. Лейбницем. Ньютон, разрабатывавший начала дифференциального и интегрального исчислений независимо от Лейбница, пользовался менее совершенными обозначениями. Символику Ньютона в то время употребляли только в Англии. Введение обозначений Лейбница значительно облегчало знакомство с литературой по математике, издаваемой на европейском континенте.
Бэбидж писал, что Общество должно было способствовать распространению принципов чистого «d-изма» [1 Бэбидж имеет здесь в виду трактовку производной как отношения дифференциалов (y'=dy/dx), которая была принята в европейских странах.]. 185, с. 25]. Но в скором времени «Аналитическое общество» значительно переросло эти задачи. Оно стало пропагандистом новых идей в математике и дало толчок ее развитию в Англии.
«Аналитическое общество» стало проводить регулярные заседания, на которых его члены выступали с научными докладами, обсуждали появляющиеся в печати работы. «Аналитическое общество» развило довольно большую издательскую деятельность, в частности, стало публиковать свои труды. Бэбидж, Гершель и Пикок в 1816 г. перевели с французского языка «Трактат по дифференциальному и интегральному исчислению» профессора Политехнической школы в Париже С. Ф. Лакруа (1765— 1843), дополнив его в 1820 г. двумя томами примеров [16]. Все три друга в это время много занимались математикой.
Вначале движение, начатое «Аналитическим обществом», мало затрагивало алгебру, но постепенно многие идеи (особенно Пикока), имевшие популярность в -Обществе, оказались решающими для пересмотра предмета алгебры. В «Аналитическом обществе» обострился интерес к символике, формализации различных теорий в математике. В Великобритании всегда в большом почете были «Начала» Евклида с их аксиоматическим построением, поэтому английские математики доброжелательно отнеслись к попыткам аксиоматического изложения алгебры.
В начале XIX в. возникла необходимость обосновать действия с комплексными числами. Проблема привлекла внимание многих математиков, в том числе и членов «Аналитического общества». К этому времени английские математики еще не достигли уровня математиков континента в новых разделах математического анализа. Это также послужило одной из причин увлечения английских математиков логическими проблемами алгебры. Английская алгебраическая школа, основы которой были заложены в «Аналитическом обществе», внесла существенный вклад в формирование и развитие новой алгебры. Фундаментальный «Трактат по алгебре» (1830) Пикока был первой серьезной попыткой развития аксиоматических принципов в алгебре.
Пикок разделил алгебру на «арифметическую» и «символическую». Он считал, что арифметику можно считать отправной точкой для обобщений в символической алгебре. Символическую алгебру Пикок определял так: «Алгебра может быть определена как наука об общих суждениях, производимых символическим языком». Символы алгебры могут представлять количества любого вида, а операции, над ними выполняемые, «вводятся соответствующими определениями и допущениями, которые и будут составлять первые принципы науки».
В другом фундаментальном труде «Символическая алгебра» (1837) Пикок обсуждает предмет алгебры и содержание алгебраической операции, рассматривает принципы теоретического построения алгебры как дедуктивной науки. Он пишет о том, что основные принципы алгебры должны быть такими, чтобы логические следствия, вытекающие из них, не содержали противоречий. Это требование, считает Пикок, будет выполнено, если алгебра будет проверять свои основные положения «на принципах какой-нибудь более простой и известной науки, например, арифметики». Пикок неоднократно подчеркивал существенную роль интерпретации при формальном построении алгебры. Он писал, что тем символам, к которым примешиваются алгебраические операции, можно давать не только арифметические значения, но и другие — физические, геометрические и т. д.
В 60-х годах XX в. Дж. М. Дабей обнаружил в Британском музее неопубликованную работу Бэбиджа «Философия анализа», написанную в 1821 г. Эта работа содержит многие мысли, очень близкие к идеям Пикока, которые тот изложил в 1830 г. в своей книге. Нет сомнения, что Пикок был знаком и с рукописью и со взглядами Бэбиджа. По-видимому, роль Бэбиджа в формировании новой алгебры значительнее, чем это принято считать [104].
В 1815—1817 гг. Бэбидж опубликовал в «Философских трудах» три работы по математическому анализу [3, 4, 6]. Гершель опубликовал в записках Королевского общества статью о новых применениях математического анализа. Он писал в Энциклопедии также статьи о свете, метеорологии и истории математики.
Важное значение в развитии алгебры имели также работы Д. Ф. Грегори (1813—1844), В. Р. Гамильтона (1805—1865) и других английских математиков, которые исходили из идей, высказанных на заседаниях в «Аналитическом обществе».
Итак, основным объектом изучения в алгебре становятся алгебраические операции, вводимые аксиоматически, эти операции распространяются на множества объектов различной природы. Такой подход развился из идей, зародившихся в «Аналитическом обществе», в разработке которых существенную роль сыграл Ч. Бэбидж.
Бэбидж был способным студентом и хорошо учился, однако он считал, что его друзья Гершель и Пикок достигли в математике больших успехов, чем он. Не желая по окончании быть третьим среди лучших студентов в Тринити-колледже, он в 1813 г. переходит в колледж Св. Петра. Действительно он там стал первым студентом и, окончив колледж, получил в 1814 г. степень бакалавра.
В 1815 г. в возрасте 24 лет Бэбидж женится на 23- летней Джорджии Витмур [1 В честь Джона Гершеля Бэбидж назвал своего первенца, родившегося в конце 1815 г., Бенджаменом Гершелем. У Чарльза и Джорджии Бэбидж за 13 лет их брака родилось восемь детей, пятеро из которых умерли в детстве.] и переезжает в Лондон.
Свою первую научную работу «О бесконечных произведениях» Бэбидж опубликовал еще студентом в 1813 г. в «Записках Аналитического общества». Вскоре после окончания университета он публикует в Докладах лондонского Королевского общества фундаментальную работу в двух частях «Очерк функционального исчисления». Так как в то время Бэбидж не был членом Королевского общества, его работу представил секретарь общества известный физик У. X. Волластон. Кроме того, ее с успехом зачитывали на заседаниях общества 15 июня 1815 г. (первую часть) и 14 марта 1816 г. (вторую часть). После публикации этих работ Бэбиджа избирают в том же 1816 г. членом Королевского общества.