Литмир - Электронная Библиотека
Содержание  
A
A

Еще один класс галактик с активными ядрами, обладающими аномально сильным ультрафиолетовым излучением, был обнаружен советским астрономом Б. Е. Маркаряном. Видимо, большая часть этих галактик переживает в настоящее время эпоху, следующую за выбросом, как говорят астрономы, послеэруптивную стадию.

Не исключено, что энергия излучения квазаров и активность ядер галактик порождаются сходными физическими процессами.

Как мы уже говорили, квазары — весьма удаленные объекты. А чем дальше от нас находится тот или иной космический объект, тем в более далеком прошлом мы его наблюдаем. Галактики, в том числе и галактики с активными ядрами, в среднем, расположены ближе, чем квазары. Следовательно, это объекты более позднего поколения — они должны были образоваться позже квазаров. И это немаловажное свидетельство того, что квазары, возможно, являются ядрами галактик.

Что же касается природы физических процессов, обеспечивающих энерговыделение квазаров, то на этот счет имеется одна интересная гипотеза.

Черные дыры во Вселенной

В последние годы большую популярность в астрофизике приобрела гипотеза так называемых „черных дыр“.

Двадцатый век принес с собой целый ряд удивительных открытий в физике и астрономии. Идет своеобразная цепная реакция: обнаруживаются диковинные явления, а их дальнейшее изучение и осмысление приводит к открытию явлений, еще более поразительных. Таков закономерный путь развития естествознания.

Один из самых диковинных, правда, пока еще „теоретических“ космических объектов, который в последние годы привлекает особое внимание физиков и астрофизиков, — черные дыры. Одно название чего стоит: дыры во Вселенной, да еще черные!

Согласно общей теории относительности Эйнштейна, силы тяготения непосредственно связаны со свойствами пространства. Любое тело не просто существует в пространстве само по себе, но определяет его геометрию. Однажды какой-то предприимчивый газетный репортер обратился к Эйнштейну с просьбой изложить суть его теории в одной фразе и так, чтобы это было понятно широкой публике. „Раньше полагали, — ответил на это Эйнштейн, — что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время“.

Любые массы искривляют окружающее пространство. В повседневной жизни мы этой искривленности практически не ощущаем, поскольку нам обычно приходится иметь дело со сравнительно небольшими массами. Однако в очень сильных полях тяготения этот эффект может приобретать существенное значение.

За последние годы во Вселенной обнаружен целый ряд явлений, которые свидетельствуют о возможности концентрации огромных масс в сравнительно небольших областях пространства.

Если некоторая масса вещества окажется в малом объеме, критическом для данной массы, то под действием собственного тяготения это вещество начинает сжиматься. Наступает своеобразная гравитационная катастрофа — гравитационный коллапс.

В процессе коллапса растет концентрация массы. Растет в соответствии с общей теорией относительности и кривизна пространства. И в конце концов наступает момент, начиная с которого ни один луч света, ни одна частица, ни один физический сигнал не может „вырваться“ из подобного образования наружу. Это и есть черная дыра.

Для внешнего наблюдателя такой объект как бы перестает существовать — от него не поступает никакая информация: ведь любая информация не может распространяться сама по себе, она должна иметь материального носителя.

Радиус коллапсирующего тела, при котором оно превращается в черную дыру, получил название гравитационного. Для массы Солнца гравитационный радиус равен 3 км, для массы Земли — 0,9 см. Если бы Солнце сжалось до размеров шара радиусом 3 км, оно превратилось бы в черную дыру.

На поверхности, радиус которой для данной массы равен гравитационному, сила тяготения становится бесконечно большой. И для того, чтобы ее преодолеть, надо было бы развить вторую космическую скорость, превосходящую скорость света. Вот почему черная дыра ничего не выпускает наружу. В то же время она может втягивать в себя окружающее вещество, увеличивая при этом свои размеры. Таким образом, возможность существования черных дыр можно объяснить и с точки зрения классической механики Ньютона. Но для описания всего комплекса явлений, связанных с черными дырами, необходимо применение общей теории относительности.

В частности, согласно этой теории в сильном гравитационном поле течение времени замедляется. Поэтому для внешнего наблюдателя процесс падения какого-либо тела в черную дыру должен протекать бесконечно длительное время. Для такого наблюдателя процесс сжатия вещества фактически останавливается при приближении к гравитационному радиусу. Иную картину увидел бы воображаемый наблюдатель, падающий вместе с веществом в черную дыру. Он за конечный промежуток времени достиг бы гравитационного радиуса и продолжал падать к центру черной дыры. То же самое происходит и с коллапсирующим веществом: перейдя через гравитационный радиус, оно продолжает сжиматься дальше.

Согласно выводам современной теоретической астрофизики, черные дыры могут быть заключительными этапами в жизни массивных звезд. Пока в центральной части звезды работает источник энергии, высокая температура приводит к расширению газа, который стремится „раздвинуть“ вышележащие слои. В то же время колоссальная сила тяготения звезды „тянет“ эти слои к центру. Но после того, как „горючее“ в недрах звезды оказывается полностью израсходованным, температура в ее центральной части постепенно понижается. Равновесие нарушается и под действием собственного притяжения звезда начинает сжиматься. Ее дальнейшая судьба зависит от величины массы. Как показывают подсчеты, если звезда в 3–5 раз массивнее Солнца, то ее сжатие на заключительном этапе может привести к гравитационному коллапсу и образованию черной дыры.

Несколько лет назад был обнаружен космический объект в созвездии Лебедя, который вполне возможно является черной дырой. Это темный объект с массой, равной четырнадцати массам Солнца. Впрочем, окончательное доказательство того, что объект в Лебеде действительно черная дыра, еще впереди.

В то же время все чаще высказываются предположения о том, что в ядрах галактик и в квазарах могут находиться сверхмассивные черные дыры, которые и являются источниками активности этих космических объектов.

Такие черные дыры способны втягивать в себя окружающее вещество, энергия движения которого в гравитационном поле может перерабатываться в другие виды энергии. В частности, было сделано интересное открытие, связанное с галактикой М 87 (радиоисточник Дева А), давно привлекающей к себе внимание. На фотографии этой галактики отчетливо видна выброшенная из ядра струя, состоящая из нескольких отдельных газовых сгустков с общей массой около 10 миллионов солнечных масс и движущихся со скоростью порядка 3000 км/с. Это говорит о большой силе взрыва, который произошел в ядре.

Наблюдения показали: если на некотором расстоянии от ядра распределение вещества в М 87 соответствует обычному распределению звезд в галактиках, то вблизи центра в очень небольшом объеме сконцентрирована колоссальная слабосветящаяся масса, равная 6 миллиардам солнечных масс. Возможно, это гигантская черная дыра, возбуждающая активность ядра, а может быть, очень плотное образование еще неизвестной нам природы.

Вселенная и нейтрино

Мы уже не раз прямо или косвенно отмечали тесную связь физики и астрофизики. С одной стороны, Вселенная становится лабораторией современной физики. А с другой, — новые физические открытия, в той или иной степени вызванные к жизни астрофизическими исследованиями и астрономическими проблемами, в свою очередь оказывают неизбежное влияние на дальнейшее развитие астрономических представлений. Такова своеобразная обратная связь во взаимоотношениях и взаимопроникновении этих наук, такова диалектика познания!

29
{"b":"573752","o":1}