Литмир - Электронная Библиотека
Содержание  
A
A

Среди двухсот с лишним элементарных частиц, известных современным физикам, есть удивительная частица нейтрино. Согласно существовавшим длительное время теоретическим представлениям, эта частица лишена так называемой массы покоя — она всегда движется со скоростью, в точности равной скорости света. Однако с другой стороны, теория не накладывала никаких запретов и на возможность существования у нейтрино массы, отличной от нуля. Это обстоятельство и побудило группу ученых в Институте теоретической и экспериментальной физики АН СССР провести ряд экспериментов по выяснению действительной величины массы так называемых электронных нейтрино. Результат, пока правда предварительный, оказался в какой-то мере сенсационным: ученые пришли к выводу, что масса нейтрино не равна нулю, а составляет в энергетических единицах от 14 до 16 электрон-вольт. Масса не столь большая — в пределах от одной тридцатитысячной до одной десятитысячной массы электрона, но сам факт ее существования, если он подтвердится, повлечет за собой весьма серьезные последствия для наших представлений о Вселенной…

Одной из актуальных проблем современной астрономии является проблема внутрисолнечной и внутризвездной энергии. До недавнего времени считалось, что источником этой энергии являются термоядерные реакции синтеза гелия из водорода. И это представление настолько устоялось, что считалось одной из бесспорных идей современной астрофизики. И вдруг — сомнение!..

Мы уже говорили о том, что если в недрах нашего дневного светила действительно протекает термоядерная реакция, там должны рождаться нейтрино. Благодаря колоссальной проникающей способности, которой обладают эти частицы, весьма слабо взаимодействующие с веществом, они будут свободно „вырываться“ в околосолнечное пространство и определенная их часть достигнет Земли. Была построена специальная установка для регистрации солнечных нейтрино и проводились наблюдения. Однако результат был в высшей степени неожиданным: поток нейтрино оказался в несколько раз меньше предсказываемого теорией. Как отмечалось выше, для объяснения этого явления был предложен ряд гипотез, вплоть до предположения о том, что основным источником энергии Солнца и звезд служат не термоядерные реакции, а какие-то иные, быть может еще неизвестные нам физические процессы. Вопрос до сих пор остается открытым.

Но если подтвердится наличие у нейтрино конечной массы — откроется еще одна возможность объяснения отрицательного результата экспериментов по регистрации солнечных нейтрино. Дело в том, что в природе существуют нейтрино трех различных типов. Как полагают теоретики, нейтрино одного типа, с массой, отличной от нуля, могут самопроизвольно превращаться в нейтрино другого типа. Поэтому можно представить себе такую картину: те нейтрино, которые рождаются в недрах Солнца и для регистрации которых предназначены современные детекторы, по пути к Земле могут переходить в нейтрино, которые этими детекторами не регистрируются.

Наличие конечной массы у нейтрино внесет весьма существенные изменения и в существующие космологические представления. Как известно, геометрические свойства нашей Вселенной весьма тесным образом связаны со средней плотностью массы. Если эта плотность больше некоторой критической величины, составляющей примерно 10-29 г/см3, то пространство Вселенной замкнуто и конечно. В соответствии с существовавшими до настоящего времени астрофизическими данными реальная средняя плотность оценивалась ниже критического значения. Нейтрино могут внести в эту оценку весьма заметную поправку. Согласно имеющимся данным, на каждый протон, существующий во Вселенной (о протонах речь идет постольку, поскольку водород является самым распространенным в природе химическим элементом), приходится около миллиарда нейтрино. Таким образом, если нейтрино действительно обладает конечной массой, то даже при условии, что эта масса в несколько десятков миллионов раз уступает массе протона, общая масса нейтрино во Вселенной примерно в 30 раз превосходит массу „обычного“ вещества! Может оказаться, что все звезды, планеты, туманности и галактики лишь ничтожная добавка к нейтринному фону Вселенной. А это, в свою очередь, будет означать, что средняя плотность массы намного превосходит критическую. И, следовательно, наша Вселенная — замкнута и конечна и ее расширение со временем (через многие миллиарды лет) должно смениться сжатием.

Но и это еще не все. Как известно, современная Вселенная однородна лишь в достаточно больших масштабах. Если рассматривать сравнительно малые области пространства, то однородности не будет, — космическая материя сосредоточена в звездных островах-галактиках и скоплениях галактик. Согласно теории горячей расширяющейся Вселенной, эти космические объекты должны были образоваться на определенном этапе расширения в результате развития неоднородностей среды. Процесс должен был протекать примерно следующим образом. На одном из сравнительно ранних этапов расширения была фаза однородности с небольшими флуктуациями, возникающими вследствие гравитационной неустойчивости. В каких-то районах пространства вещества могло оказаться чуть больше, в каких-то — чуть меньше. Если силы упругости превосходят гравитационные, неоднородность может рассосаться. Но если объем, охваченный возмущениями, достаточно велик, то возникнет гравитационная неустойчивость. Таким образом, флуктуации достаточно большого масштаба должны нарастать. Гипотезу образования галактик в результате фрагментации среды за счет гравитационной неустойчивости успешно разрабатывает академик Я. Б. Зельдович и его сотрудники.

Однако эта гипотеза сталкивается с определенными трудностями. Одна из них связана с данными радиоастрономических наблюдений.

В настоящее время Вселенная для квантов реликтового излучения абсолютно прозрачна — они движутся, практически не испытывая поглощения. Но в прошлом, когда все масштабы были примерно в 1000 раз меньше, Вселенная для квантов электромагнитного излучения была абсолютно непрозрачна — оно полностью рассеивалось. Если в ту эпоху среда была совершенно однородной, то реликтовое излучение должно быть абсолютно изотропным, его интенсивность по любым направлениям должна быть одинакова.

Но современная Вселенная, как уже было сказано выше, не является идеально однородной — в ней имеются звездные острова-галактики и скопления галактик. И если эти объекты действительно образовались из „зародышей“, возникших под действием гравитационной неустойчивости, то на соответствующем этапе эволюции космическая среда уже не была абсолютно однородной. В таком случае и реликтовое излучение не может быть абсолютно изотропным, в нем должны наблюдаться мелкомасштабные флуктуации. Чтобы их обнаружить, проводились многочисленные измерения интенсивности реликтового излучения на крупных радиотелескопах, в том числе и на уникальном советском радиотелескопе РАТАН-600. Однако на очень высоком уровне точности никаких мелкомасштабных флуктуаций обнаружить не удалось, если рассчитать величину „зародышей“, исходя из размеров современных скоплений галактик. Возникает трудноразрешимая загадка! Ведь галактики и скопления из чего-то должны были образоваться. Если не из неоднородностей среды — то из чего? Никаких других правдоподобных возможностей пока что не видно.

Существование конечной массы у нейтрино могло бы снять и эту трудность. На самом раннем этапе расширения Вселенной в нейтринном газе, заполнявшем мировое пространство, могли возникать небольшие случайные неоднородности. Однако в этот период нейтрино обладали очень высокой энергией и двигались с околосветовыми скоростями. Силы тяготения небольших сгущений было недостаточно, чтобы такие нейтрино удержать. И они постепенно распадались, „рассасывались“.

Однако по мере расширения скорости нейтрино уменьшались и, как показывают расчеты, примерно через 300 лет после начального момента достаточно массивные сгущения уже могли их „захватывать“. Эти сгущения должны были обладать массой порядка 1015 солнечных масс. Они постепенно становились все более массивными, вовлекая в себя своим мощным притяжением новые нейтрино, а спустя около миллиона лет после начала расширения и обычное вещество — нейтральный газ. Накапливаясь в центральных частях невидимых нейтринных неоднородностей, оно формировалось в скопления галактик, которые мы и наблюдаем. Согласно расчетам, масса этого вещества была в несколько десятков раз меньше общей массы нейтринных сгущений.

30
{"b":"573752","o":1}