Литмир - Электронная Библиотека
Содержание  
A
A

Кроме того, будет дано определение скорости и ускорения. А после этого мы проанализируем законы механики и попытаемся возможно более четко определить их физическое содержание. Такова программа.

Но прежде чем перейти к ее выполнению, необходимо сделать последнее замечание. Наша задача — не давать идеальные и общие определения, отнюдь нет! Мы просто стремимся понять физический смысл принципов Ньютона и по возможности ясно представлять себе, какое физическое содержание скрыто за теми символами и понятиями, которые мы используем.

Начнем с длины (расстояния).

Первая «неожиданность» — определение длины.

Вопрос «Что такое длина?» Ньютон обходит молчанием. И напрасно. Этот вопрос продиктован не праздными выдумками хитроумного схоласта. Это вполне реальная физическая задача. Причем мы рассмотрим проблему чисто утилитарно. Мы хотим знать, как на практике определять расстояние между двумя точками или длину физического тела.

Очевидное? Нет, еще неизведанное… - i_010.png

К счастью, вопрос об определении длины столь же касается геометров, как и физиков, и потому строгое математическое определение существует. (Математики не терпят никакой неопределенности.)

Определение. Длиной отрезка называется число, которое сопоставляется с каждым отрезком посредством процесса измерения.

Рецепт же для процесса измерения таков.

Чтобы измерить отрезок AB, нужно:

1) выбрать масштабный отрезок, обозначим его M (скажем, метр);

2) разбить этот отрезок на n равных между собой отрезков (допустим, 10 дециметров) — обозначим их M/n[6];

Очевидное? Нет, еще неизведанное… - i_011.png

3) откладывать отрезки AC1 = C1C2 = … = Cm–1Cm = M/n от точки А на отрезке AB, пока это возможно. Обозначим номер последнего m (например, 18);

4) увеличить неограниченно число n (разбивать масштабный метр на сантиметры, миллиметры и т. д.), находя каждый раз соответствующее число m (может быть, 183 см, 1834 мм…).

Это определение длины (или расстояния) остается и в специальной теории относительности.

Предел, к которому стремится отношение m/n(18/10; 183/100; 1834/1000…), и называется длиной отрезка AB, измеренного с помощью масштабного отрезка M[7].

Приведенное определение — типичный пример дедуктивной системы изложения — основного метода построения математики. Некоторым оно может показаться скучным и длинным, но другие, возможно, увидят в нем строгую и великолепную красоту математического мышления.

Попросту говоря, определение длины состоит в следующем.

Дайте нам масштабный отрезок, длина которого, по определению, равна единице. Откладывая его на измеряемом отрезке, мы увидим, сколько раз он уложился. Это число и есть длина измеряемого отрезка. Чтобы точно найти, сколько раз уложился масштабный отрезок на измеряемом, надо уметь откладывать и дробные доли масштаба, а значит, уметь делить масштабный отрезок на сколь угодно малые равные части. Вот и все.

Довольно существенное добавление. Математическое определение переводится на обыденный житейский язык.

Так решают вопрос математики. Но для физика и этого строгого определения недостаточно. И вот почему.

Дайте нам масштабный отрезок, говорите вы, мы его отложим вдоль измеряемого отрезка и скажем, чему равна длина. Ну, а если из-за физических условий задачи нельзя приложить масштаб? Скажем, требуется, не выезжая из Москвы, определить расстояние от Шаболовской башни до водокачки в Люберцах. Или, находясь у полотна железной дороги, не сходя с места, измерить длину проезжающего поезда. Ведь к нему масштаба не приложить. Он попросту уедет.

Очевидное? Нет, еще неизведанное… - i_012.png

Далее, в процессе определения длины незримо присутствует понятие «движение». Если обратиться к геометрии, то мы будем приятно поражены, узнав, что математики считают движение понятием первичным и никак его не определяют. Физиков же это не очень устраивает.

И наконец, последнее. Математикам хорошо. Они оперируют с идеальными геометрическими отрезками. Их масштабный отрезок M не расширится при нагревании, не сократится под давлением — он обладает только геометрическими, а не физическими свойствами.

Если же мы хотим иметь строгое определение длины, пригодное для физиков, необходимо учитывать реальные свойства масштабного отрезка, а значит, сформулировать какие-то добавочные постулаты, описывающие эти свойства.

После только что сказанного может сложиться впечатление, что попытка четко определить длину и процесс ее измерения в достаточной степени безнадежна.

Впрочем, в науке, как и в жизни, можно примириться с любыми тяготами избранного пути, если знать, к чему мы стремимся, видеть перспективу. А пока вообще не очевидно, следует ли физикам заниматься такими вопросами, как скрупулезный анализ понятий длины времени и т. п. Или же решение подобных проблем, говоря грубо, досужая, никому не нужная болтовня?

«Может быть, оставим, господа, все эти вопросы математикам? Им и карты в руки. Пусть они дают строгие определения. А мы и без определений знаем, что такое длина. Это, изволите видеть, понятно каждому. И длину движущегося поезда без всяких рецептов и прикладывания масштабов прекрасно измерим. Отметим, знаете ли, просто точку на полотне и одновременно точку, против которой начало паровоза имелось. И все. Потом можете прикладывать к поезду ваш масштаб — сойдется. И вообще, господа, сводить все к прикладыванию масштаба, извините, глупость! Извольте вашим способом измерить расстояние между вершинами двух гор. Не выйдет-с! Без триангуляции не обойдетесь. А в триангуляции, изволите видеть, измерение углов присутствует, в определение ваше не входящее.

Некие сомнения. Попутно автор проявляет юмор.

Жили мы, милостивые государи, без этих определений, слава те господи, почитай с Ньютона, и ничего, неплохо жили-с. Измеряем и расстояние до звезд и длину микроорганизмов. И все без прикладывания.

Конечно, не отрицаю, нечто разумное в определении сем присутствует. К примеру-с, масштабный отрезок. Эталон длины иметь нужно, согласны? Но об эталоне длины, позвольте сказать, мы не менее вашего наслышаны. Без малого сто лет за семью замками храним. В подвалах-с.

А в целом все это не то. Натуру изучайте. Феномены-с. А основ механики не касайтесь. Здесь не вам чета люди трудились. Ньютон-с, к вашему сведению!»

Можно представить, что примерно такую отповедь пришлось бы нам выслушать от какого-либо ординарного профессора физики середины XIX века.

И с горечью приходится признать, что пока нечего возразить. Опыт, весь опыт классической физики свидетельствует против нас. Действительно, ведь обходились раньше без определений.

Тем не менее в данном случае физики основательно просчитались. Лишь Эйнштейн показал, что до теории относительности они, по существу, не знали, с какими представлениями о природе мира, о природе времени и пространства связана их наука.

Сейчас всем ясно, что такие понятия, как время или длина, нуждаются в совершенно четком определении, что в физике нет и не может быть места для самоочевидных утверждений.

вернуться

6

Равными называются отрезки, которые можно совместить между собой путем процессов движения. Свойства движения, в свою очередь, определяются аксиомами геометрии. Возможность деления любого отрезка на два, а следовательно, и на любое число вида 2п равных отрезков доказывается при помощи других аксиом геометрии.

вернуться

7

Для длины, определенной таким образом, можно доказать следующие важные теоремы:

Теорема 1. Длина всякого отрезка существует и определяется единственным образом для данного выбора масштабного отрезка.

Теорема 2. Длины равных отрезков равны.

Теорема 3. Если отрезок AC есть сумма отрезков AB и BC, то его длина равна сумме длин этих отрезков.

Теорема 4. Длина масштабного отрезка равна единице.

9
{"b":"568614","o":1}