Несколько упрощая, можно заявить: вся математическая сторона теории Эйнштейна основана на одном факте — инвариантности интервала.
Что такое «интервал» и его «инвариантность», сейчас скажем. Правда, в нашей беседе значение понятия интервала не будет раскрыто, и, уверяя читателя, что это очень важно, автор напоминает человека, демонстрирующего фотографию тигра, чтобы доказать, какой это страшный зверь. У собеседника же всегда останется смутное подозрение, что перед ним просто увеличенный портрет котенка. Тем не менее от соблазна продемонстрировать фото все же трудно удержаться…
Инвариантность интервала и чуть-чуть математики.
Пусть произошли два каких-то события А и В.
Пусть координаты этих событий, измеренные в определенной инерциальной системе отсчета K, — xA; yA; zA и xB; yB; zB.
Пусть, наконец, определенные в той же инерциальной системе моменты времени, когда случились эти события, — tA и tB.
Тогда интервал между этими событиями определяется соотношением:
S2AB = c2(tB – tA)2 – (xB – xA)2 – (yB – yA)2 – (zB – zA)2.
И эта величина обладает замечательным свойством.
Допустим, что наши события А и В рассматривают из другой инерциальной системы отсчета K1. Обозначим координаты событий в этой новой системе x1A; y1A; z1A и x1B; y1B; z1B, а моменты времени, когда произошли события, — t1A и t1B. Для наглядности снова представим некую многострадальную железную дорогу — такую, что система отсчета, связанная с полотном дороги, инерциальна. Допустим, это система К. (Если вспомнить, что система отсчета «Земля», строго говоря, неинерциальная, наш рельсовый путь придется проложить где-то в космосе.)
Пусть по дороге равномерно и прямолинейно идет поезд. Тогда система отсчета, связанная с поездом, тоже инерциальна. Это система K1. Где-то на небосклоне вспыхнули две звезды — это события А и В.
Если наблюдатели на полотне дороги и в поезде отметят координаты событий и моменты, когда они произошли, то окажется, что
SAB = S1AB или c2(tB – tA)2 – (xB – xA)2 – (yB – yA)2 – (zB – zA)2 = c2(t1B – t1A)2 – (x1B – x1A)2 – (y1B – y1A)2 – (z1B – z1A)2.
Интервал между событиями неизменен при переходе от одной инерциальной системы к другой. Иначе говоря — интервал инвариантен.
Предыдущее равенство еще удобнее записать так:
S2AB = c2t2AB – r2AB = c2(t1AB)2 – (r1AB)2 = (S1AB)2.
Вот что такое инвариантность интервала.
Здесь rAB и r1AB — расстояние между точками, где произошли события A и B в системах K и K1, а tAB и t1AB — соответственно промежутки времени.
Как установили, что интервал остается неизменным, инвариантным при переходе от одной системы к другой?
Инвариантность интервала — просто математическая запись основных положений теории — принцип относительности плюс принцип постоянства скорости света. Как именно доказывается инвариантность интервала, обсуждать не стоит, хотя это и довольно просто. Это вопрос математики, а математика, как говорил А. Н. Крылов, подобно мельнице, перемалывает все, что вы засыплете. Нас же интересует в первую очередь «засыпка».
Из инвариантности интервала немедленно следуют преобразования Лоренца — формулы, позволяющие перейти от одной инерциальной системы отсчета к другой.
Это тоже математика. Опустим вывод преобразования Лоренца и даже скрепя сердце промолчим об удивительно изящной математической трактовке этих преобразований, принадлежащей Минковскому. В конце концов все это относится к работе мельницы, а нам с лихвой хватит попытки разобраться в основных физических выводах теории. Посему все формулы будем принимать на веру.
1. Рассмотрим две инерциальные системы отсчета K и K1, оси которых по направлениям совпадают.
Пусть относительная скорость движения этих систем v направлена вдоль осей x и x1. Тогда, зная время и координаты любого события в одной системе отсчета, можем найти время и координаты этого же события в другой системе. А именно:
Эти формулы и определяют преобразование Лоренца.
Как видите, написаны формулы перехода от штрихованной системы к нештрихованной[69].
Из рисунка видно, что рассматривается случай, когда скорость системы K1 в системе K равна +v.
Теперь, зная координаты и время в системе K1 и использовав наши формулы, сразу можем найти соответствующие координаты и время в системе K.
Чтобы проделать обратный переход, нужно разрешить наши уравнения относительно x1 и t1 (как говорится, «уединить» x1 и t1). Это очень легко сделать чисто формально, но еще проще вспомнить, что ввиду равноправия инерциальных систем формулы перехода от K к K1 и от K1 к K должны иметь тождественный вид.
Учитывая, что скорость движения K относительно K1 равна — v, сразу напишем:
Мы рассмотрели сравнительно простой случай, когда относительная скорость движения систем K к K1 совпадает по направлению с осями x и x1.
В общем случае формулы перехода, естественно, усложняются, но все принципиальные отличия теории Эйнштейна от классической физики полностью выявлены и в частном случае.
Сразу видно, как существенно отличаются преобразования Лоренца от аналогичного преобразования Галилея в классической механике. Однако, кроме различия, есть и значительное сходство.
По этому поводу можно высказать совершенно общее утверждение. Заранее ясно, что в теории Эйнштейна как предельный случай должна заключаться классическая механика. Механика Ньютона многократно оправдывалась при проверке на опыте, и никакая разумная новая теория не может просто ее отбросить. От подобных неприятностей классическую механику метод принципов Ньютона страхует навечно.