Литмир - Электронная Библиотека

У нее простая функция: она должна передать графиту от поршня нужное давление (100000 атм), от трансформатора — нужный ток (для нагрева до 2000°) и удержать расплавленное и сжатое огромной силой вещество.

Два, на первый взгляд, взаимоисключающих условия: передать давление и температуру — и удержать расплав.

Под действием чрезвычайно высоких температур и давлений вещества ведут себя очень и очень по-разному. Например, с увеличением нагрузки металлы изменяют свою кристаллическую структуру, а вместе с тем и электропроводность. Значит, изменение электропроводности может служить сигналом о величине давления в камере, и на этой основе была разработана «реперная» система измерения давлений в камерах.

А есть минералы, которые при увеличении нагрузки сначала начинают течь, как жидкость, но при дальнейшем росте давления течь перестают и наглухо запирают все отверстия. Один из таких минералов — пирофиллит — использовал для уплотнений еще Бриджмен. Но Верещагину и его коллегам нужны были сотни килограммов таких минералов. Кто-то сообразил: годится так называемый литографский камень, его пришлось позаимствовать в московских типографиях — на первый случай хватило. Потом, спасибо, подсказали геологи: месторождение нужного минерала, «алагезского камня», есть в Грузии.

Таких проблем, подпроблем — и так далее, и так далее — оказалось великое множество. И без решения каждой из них синтезировать алмаз было нельзя.

А главной проблемой была конструкция самой камеры сжатия и мультипликатора — устройства, передающего давление. Эту проблему сумел красиво и «просто» решить Леонид Федорович Верещагин. Он подметил некое изменение формы подвергаемого давлению металла, словно сама природа подсказывала наиболее выгодную форму камеры. Эта подсказка была им понята. И сконструированное Верещагиным устройство надежно передавало веществу высокое давление и высокую температуру и надежно удерживало содержимое от разлета.

Приступая к работе, Верещагин, Рябинин и их коллеги считали, что именно эту задачу они и должны решить: научиться выводить углеродистое вещество в зону стабильности алмаза и там держать его несколько секунд или минут. О том, что именно нужно калить и сдавливать, они сперва не слишком задумывались.

Между тем попытки превратить в алмаз один графит, без добавления других веществ, в которых графит растворяется, до поры до времени к успеху не приводили. (Вспомним: Лейпунский предусматривал необходимость применения металлов-растворителей для смягчения режима и ускорения процесса перехода графита в алмаз.) Впоследствии было обнаружено, что далеко не всякий металл, хорошо растворяющий углерод, годится для этой цели. Свинец, например, не годится. Следовательно, металл действует не только как растворитель, но и как катализатор. Однако это теоретическое уточнение было внесено уже после того, как алмазы были синтезированы с помощью того самого металла, которым пользовался еще Муассан, — железа.

Графит и железо (или кобальт) помещали в «алагезский камень», камень — в камеру, камеру — в пресс. Включали гидравлический насос пресса. Подавали ток на камеру. Проходили секунды или минуты. Пресс выключали. Камеру остужали. Затем вскрывали. Шлаковидное вещество иногда рассматривали в лупу, иногда сразу же отправляли в рентгеновскую лабораторию — делать дебаеграмму.

По внешнему виду дебаевской рентгенограммы нельзя утверждать, что получен алмаз; можно только сказать, что это не графит, а какая-то кубическая решетка. Но какая? Может быть, на рентгенограмме карбиды металла-растворителя или вольфрама (камера сделана из карбида вольфрама). Чтобы прояснить этот вопрос, нужны расчеты.

Когда аппаратура уже вышла примерно на те параметры, которые должны обеспечивать синтез алмаза, дежурные вдруг стали замечать, что установка «барахлит»: через некоторое время после ее пуска в электрической сети вдруг падало напряжение. Поиски неисправностей ни к чему не приводили. Прошло довольно много времени, пока догадались: напряжение в сети падало тогда, когда резко увеличивалось сопротивление в камере, а увеличивалось оно потому, что графит превращался в алмаз!

Ложных тревог и ложных надежд было немало, пока, наконец, дебаеграммы стали устойчиво показывать нечто алмазоподобное, а извлеченные из камер темные крупицы стали устойчиво царапать стекло.

Более осторожный Юрий Николаевич Рябинин все еще склонялся к тому, что это карбиды. Но Леонид Федорович Верещагин уверенно сказал: алмазы! Из царапающей стекло массы сделали гравировальные карандаши. Один такой карандаш преподнесли приехавшему в институт Льву Андреевичу Арцимовичу, другой — Петру Леонидовичу Капице.

А сами продолжали нащупывать более точно области давлений и температур, при которых образовывалось бы не что-то алмазоподобное, а настоящие — пусть маленькие — кристаллики.

В конце 1960 г. дебаеграммы стали все более определенно указывать на то, что рентгеновский луч рассеивается на алмазной кристаллической решетке. И вот, наконец, под увеличительными стеклами засверкали извлеченные из пресса алмазные россыпи… алмазные горы и хребты.

За синтез алмазов Леонид Федорович Верещагин, Юрий Николаевич Рябинин, Василий Андреевич Галактионов были удостоены высшей научной награды СССР — Ленинской премии.

О напряженной работе людей, взявших на себя задачу промышленного выпуска алмазов, будет рассказано в следующей главе. Здесь же стоит, несколько нарушив хронологию, вернуться к промежуточному эксперименту, результатом которого был некий невзрачный материал, царапающий стекло.

Пять лет спустя, когда уже полным ходом шло промышленное производство синтетического алмазного порошка, когда вместе с тем стало ясно, что синтезировать крупные монокристаллы алмаза не удается, — Верещагин вспомнил о том давнем странном опыте. Очень может быть, что причиной тому были обстоятельства совсем не теоретического толка, а, например, соображения о том, что крупные алмазы, не боящиеся ударов, добывают только в Бразилии, да и там их месторождения уже порядком обеднели…

Тем не менее пытаться всерьез искать какую-либо связь между этим огорчительным фактом и случаем — тем самым случаем, что летом 1960 г. подбросил в камеру высокого давления ту самую темно-серую шлакоподобную массу, из которой сделали сувениры для Арцимовича и Капицы, — было бы все же занятием довольно сомнительным. Если бы не мнение самого Леонида Федоровича Верещагина, вспомнившего по этому поводу слова Пастера: «Случай говорит только подготовленному уму…».

Зарождающийся монокристалл не может расти быстро — его поверхность, к которой может прилепиться каждый следующий атом, ничтожна. Иное дело — поликристалл, ибо он растет одновременно во всех своих центрах, а их множество.

Несколько вольное сравнение: снежинка и лед. Вырастить снежинку величиной с таз не удавалось еще никому, но ничего не стоит выставить таз с водой на мороз и получить основательный ледяной кругляш.

Самые твердые и крепкие бразильские алмазы называются карбонадо, от carbo (уголь), ибо они больше походят на куски каменного угля, чем на драгоценные камни. Непрозрачность, чернота и замечательная прочность карбонадо происходят из особенностей его строения. В отличие от других алмазов, карбонадо — это не единый кристалл, а как бы клубок кристаллов, проросших друг в друга. Это, если угодно, алмазная сталь: стальной слиток тоже состоит из множества проросших друг в друга кристаллов железа, углерода и соединений железа с углеродом — карбидов. И если при отборе ювелирных камней карбонадо идет в отбросы, то для бурения он совершенно незаменим.

Синтезировать карбонадо — значило бы решить одну из важных частей проблемы искусственных крупных алмазов.

Так вот, сотрудники Верещагина откопали в архиве старый лабораторный журнал, выписали оттуда все параметры того давнего эксперимента и повторили его. И у них снова получились темно-серые, непрозрачные, весьма твердые, но весьма хрупкие зерна. Их тщательно исследовали. Это были поликристаллы алмаза — с очень неравномерной структурой, сильно засоренные примесями графита и металла, но все же настоящие алмазные поликристаллы. Оставалось найти условия, при которых эти поликристаллы получились бы достаточно прочными.

26
{"b":"566037","o":1}