Может быть, алмазы уже были в магме, вырвавшейся по трубкам из недр? Или они образовались в самих трубках? (Кстати, зная ответ на этот вопрос, представляя себе хоть приблизительно разницу между тем, что происходит глубоко под земной корой и при застывании магмы, уже прорвавшейся к поверхности, можно было думать над тем, как повторить эти условия, «заданные» самой природой.)
В более поздние времена ученые, в том числе В. С. Соболев, пришли к убеждению, что алмазы образуются на большой глубине — там, где давление и температура достаточны для их рождения. Считается общепризнанным, что происходят они только из кимберлитов. Но почему в одних кимберлитовых трубках алмазы есть, а в других — ни одного? (Причем кимберлит там и там совершенно одинаков.) В Южной Африке кимберлитовые трубки отстоят иногда на какой-нибудь километр одна от другой. В одной — множество крупных алмазов, в другой — алмазы редки, в третьей или пятой — ни кристаллика. Как это могло получиться, если алмазы были в той магме, которая застыла, образовав кимберлит? И еще одно, алмазов никогда не находили в кимберлитовых жилах, образовавшихся, в отличие от трубок, постепенно, без прорывов.
Вот одна (только одна из многих!) теория.
Глубинная магма, поднимаясь вверх, образовала вторичные очаги, камеры. На окраинах древних монолитных платформ такая камера, заполненная пришедшей снизу магмой, могла оказаться под опускающимся участком земной коры, который начинал с колоссальной силой давить на нее сверху. Когда давление становилось большим, чем могли выдержать окружающие породы, происходил взрыв, магма прорывалась на поверхность.
Если «вторичный очаг» взорвется, образуя трубку, при умеренном давлении, трубка будет «пустой». При 25 — 30 тыс. атм. в ней появятся пиропы. При еще большем давлении — алмазы. Кстати, такая теория позволяет объяснить, почему в разных, даже соседних, трубках бывают алмазы разных сортов, разной расцветки…
Пожалуй, нет смысла вдаваться дальше в детали, пока специалисты сомневаются и спорят (тем более, что это отвлечет нас от главного направления рассказа). Бесспорно одно: теория, которой пользовались Соболев и Моор, утверждая, что Сибирская платформа сродни Южно-Африканскому щиту, — эта теория была заведомо верной (она подтверждена существованием треста «Якут алмаз»).
Вначале теории не хватало только точности: где именно надо искать. Точное предсказание сделал геолог Юрий Михайлович Шейнман.
В 1951 г. он предсказал с точностью до 200 км, где именно следует искать кимберлитовые трубки в Якутии. Не посередине платформы. И не у самого края, где она уже разбита на блоки, между которыми магма спокойно поднималась по трещинам. Искать надо поодаль — гам, где платформа уже покрепче.
Наступление на Сибирской платформе ширилось.
Летом 1953 г. на Вилюе, на косе Соколиной группа геолога Григория Файнштейна обнаружила первую алмазоносную россыпь.
Летом того же года ленинградские геологи Наталья Сарсадских и Лариса Попугаева нашли пиропы — яркокрасные спутники алмаза.
21 августа 1954 г. Лариса Попугаева и ее помощник, рабочий Федор Беликов, пробираясь по пиропам к их «истоку», открыли первую в Якутии кимберлитовую трубку. Попугаева назвала ее «Зарницей» — то ли потому, что над тайгой стала собираться гроза, то ли как предвестницу…
13 июня 1955 г. геолог Юрий Хабардин по голубоватому цвету кучи земли, выброшенной лисой из норы, нашел алмазную трубку «Мир».
Казалось бы, что еще надо? Вот они — алмазы! И никакой алмазной проблемы больше нет…
Но на самом деле она оставалась: чтобы начать промышленную добычу полезного ископаемого на новом месторождении даже в хорошо освоенном районе, с хорошей сетью дорог, нужен бывает не один десяток лет. Пример тому КМА — Курская магнитная аномалия, находящаяся в самом центре европейской части страны. А здесь была полярная пустыня — непроходимая тайга и болота.
Итак, в конце 50-х годов алмазная проблема в нашей стране продолжала существовать. Решить ее должны были — сомнений после недавних сенсаций уже не оставалось — специалисты по физике и химии высоких давлений.
Ни Лейпунский, ни Франк-Каменецкий после войны алмазами больше не занимались. Их интерес к алмазам был в известной мере эпизодическим, оба они были больше теоретиками, чем экспериментаторами, а проблема алмазного синтеза была все же в основном экспериментальной.
В Академии наук ее поручили специалистам, которые занимались синтезом монокристаллов разного химического состава: искусственного горного хрусталя, искусственных рубинов и других искусственных минералов. Они были нужны прежде всего для техники — например, для часов и других точных механизмов; в то же время развивались исследования физики твердого тела, и монокристаллы уже интересовали физиков прежде всего как возможные преобразователи энергии.
Проблема синтеза алмаза была включена в планы работы Института кристаллографии Академии наук, которым руководил академик Алексей Васильевич Шубников.
Однако дела с решением этой проблемы шли в институте гораздо хуже, чем, например, с синтезом кварца или рубина. Прежде всего потому, что, добившись успеха с кварцем и рубином, специалисты-кристаллохимики решили и к синтезу алмаза идти тем же путем, без применения высоких давлений. Только сотрудник этого института Владимир Петрович Бугузов отстаивал необходимость искать решение с помощью высоких давлений — пытался синтезировать алмаз в условиях его стабильности, а не метастабильности. Но он оказался в меньшинстве.
К тому времени, когда фирма «Дженерал электрик» сообщила об успехе группы Холла, исследования по синтезу алмаза в Институте кристаллографии продолжались уже 11 лет — и без существенных достижений. (Кстати, сообщение о синтезе алмазов и само по себе принесло фирме немалую прибыль: в тот же день, когда оно появилось, курс акций «Дженерал электрик» на бирже поднялся в цене.)
Все, кто занимался или хотел заняться синтезом алмазов, узнали, что первые алмазы были синтезированы в установке высокого давления; ее фото появилось в научных журналах, а потом и в газетах. И это подтверждало сомнительность пути, которым шли в Институте кристаллографии, и надежность другого пути, за который ратовал Бутузов.
И руководители Института кристаллографии обратились в Президиум Академии наук с предложением: надо изготовить оборудование, способное поддерживать углерод в зоне стабильности алмаза, тогда институт решит поставленную перед ним задачу. А оборудованием пусть займется Лаборатория физики высоких давлений.
Когда это предложение обсуждалось в Академии наук, прозвучала, вспоминают участники этого обсуждения, и такая реплика: «Кто достанет лошадь, может и сам ездить на ней…».
Леонид Федорович Верещагин, уже упоминавшийся в предыдущей главе, незадолго до войны был приглашен академиком Николаем Дмитриевичем Зелинским из Харькова в Москву, в Институт органической химии Академии наук. Во время войны Верещагин продолжал (хоть и не так, как до того) заниматься исследованием поведения веществ в условиях сверхвысоких давлений.
Академия наук создала в Москве группы ученых для оборонных исследований, не терпящих отлагательства.
Иногда это были эксперименты. Верещагину поручали исследовать немецкие взрывные устройства. Работа была достаточно рискованной; чем закончится следующий эксперимент с «расшифровкой» взрывателя, предсказать никто не мог. И, уходя на работу, исследователи оставляли дома записки на случай, если не вернутся.
А бывало, что приходилось заниматься теорией, расчетами. Например, такими. В осажденном Ленинграде продолжали делать снаряды, а выдерживать технологию в условиях блокады удавалось, конечно, не всегда. Однажды у большой партии зенитных снарядов оказались чуть утолщенные стенки. В одном из секторов обороны Ленинграда от этих снарядов у орудий раздуло стволы. Командование запросило, можно ли из этих пушек стрелять дальше или стволы разорвутся. Положение было крайне тяжелым: перебросить в осажденный город новые орудия было невозможно. Несколько человек в Москве, в их числе Верещагин, считали ночь напролет, и у них получилось, что стволы выдержат. Как представить себе меру ответственности, которую они взяли на себя, докладывая командованию свое заключение — стрелять можно?